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Abstract

This dissertation proves lower bounds on the inherent difficulty of deciding flow
analysis problems in higher-order programming languages. We give exact char-
acterizations of the computational complexity of 0CFA, the kCFA hierarchy, and
related analyses. In each case, we precisely capture both the expressiveness and
feasibility of the analysis, identifying the elements responsible for the trade-off.

0CFA is complete for polynomial time. This result relies on the insight that when a
program is linear (each bound variable occurs exactly once), the analysis makes no
approximation; abstract and concrete interpretation coincide, and therefore pro-
gram analysis becomes evaluation under another guise. Moreover, this is true not
only for 0CFA, but for a number of further approximations to 0CFA. In each case,
we derive polynomial time completeness results.

For any k > 0, kCFA is complete for exponential time. Even when k = 1, the
distinction in binding contexts results in a limited form of closures, which do
not occur in 0CFA. This theorem validates empirical observations that kCFA is
intractably slow for any k > 0. There is, in the worst case—and plausibly, in
practice—no way to tame the cost of the analysis. Exponential time is required.
The empirically observed intractability of this analysis can be understood as being
inherent in the approximation problem being solved, rather than reflecting unfor-
tunate gaps in our programming abilities.
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Preface

What to expect, What not to expect

This dissertation investigates lower bounds on the computational complexity of
flow analysis for higher-order languages, uncovering its inherent computational
costs and the fundamental limits of efficiency for any flow analysis algorithm.
As such, I have taken existing, representative, flow analysis specifications “off
the shelf” without modification. This is not a dissertation on the design and
implementation of novel flow analyses (although it should inform such work).
The reader is advised to expect no benchmarks or prototype implementations, but
rather insightful proofs and theorems.

This dissertation relates existing research in order to situate the novelty and sig-
nificance of this work. It does not attempt to comprehensively survey the nearly
thirty years of research on flow analysis, nor the wealth of frameworks, formula-
tions, and variants. A thorough survey on flow analysis has been undertaken by
Midtgaard (2007).

Assumptions on the reader

For the reader expecting to understand the intuitions, proofs, and consequences of
the results of this dissertation, I assume familiarity with the following, in roughly
descending order of importance:

• functional programming.

The reader should be at ease programming with higher-order procedures
in languages such as Scheme or ML. For an introduction to programming

viii



PREFACE

in Scheme specifically, The Scheme Programming Language by Dybvig
(2002) and Teach Yourself Scheme in Fixnum Days by Sitaram (2004) are
recommended; for ML, Programming in Standard ML by Harper (2005)
and ML for Working Programmer by Paulson (1996) are recommended.

This dissertation relies only on the simplest applicative subsets of these lan-
guages.

• interpreters (evaluators).

The reader should understand the fundamentals of writing an interpreter, in
particular an environment-based interpreter (Landin 1964) for the functional
core of a programming language.1 The definitive reference is “Definitional
interpreters for higher-order programming languages” by Reynolds (1972,
1998). Understanding sections 2–6 are an absolute must (and joy). For
a more in-depth textbook treatment, see the gospel according to Abelson
and Sussman (1996): Structure and Interpretation of Computer Programs,
Chapter 3, Section 2, “The Environment Model of Evaluation,” and Chapter
4, Section 1, “The Metacircular Evaluator.” Finally, Essentials of Program-
ming Languages by Friedman and Wand (2008) is highly recommended.2

• the λ-calculus.

The encyclopedic reference is The Lambda Calculus: Its Syntax and Se-
mantics by Barendregt (1984), which is an overkill for the purpose of un-
derstanding this dissertation. Chapters 1 and 3 of Lectures on the Curry-
Howard Isomorphism by Sørensen and Urzyczyn (2006) offers a concise
and sufficient introduction to untyped and typed λ-calculus, respectively.
There are numerous others, such as An Introduction to Lambda Calculi
for Computer Scientists by Hankin (2004), Functional programming and
lambda calculus by Barendregt (1990), and so on. Almost any will do.3

• basic computational complexity theory.

The reader should be familiar with basic notions such as complexity classes,
Turing machines, undecidability, hardness, and complete problems. Pa-
padimitriou (1994) is a standard introduction (See chapters 2–4, 7–9, 15,

1Note that almost every modern programming language includes a higher-order, functional core:
Scheme, ML, JavaScript, Java, Haskell, Smalltalk, Ruby, C#, etc., etc.

2As an undergraduate, I cut my teeth on the first edition (1992).
3See Cardone and Hindley (2006, Footnote 1) for references to French, Japanese, and Russian
overviews of the λ-calculus.

ix



PREFACE

and 16). Jones (1997) is a good introduction with a stronger emphasis on
programming and programming languages (See part IV and V). Almost any
decent undergraduate text on complexity would suffice.

In particular, the classes LOGSPACE, PTIME, NPTIME, and EXPTIME are
used. Reductions are given from canonical complete problems for these
classes to various flow analysis problems. These canonical complete prob-
lems include, respectively: the permutation problem, circuit value problem
(CVP), Boolean satisfiability (SAT), and a generic reduction for simulating
deterministic, exponential time Turing machines.

Such a reduction from a particular complete computational problem to a
corresponding flow analysis problem establishes a lower bound on the com-
plexity of flow analysis: solving the flow problem is at least as hard as solv-
ing the corresponding computational problem (SAT, CVP, etc.), since any
instance of these problems can be transformed (reduced), using very limited
resources, to an instance of the flow analysis problem. In other words, an
algorithm to solve one problem can be used as an algorithm to solve the
other.

• fundamentals of program analysis.

A basic understanding of program analysis would be beneficial, although
I have tried to make plain the connection between analysis and evaluation,
so a thorough understanding of program interpretation could be sufficient.
Perhaps the standard text on the subject is Principles of Program Analysis
by Nielson et al. (1999), which I have followed closely because it offers an
authoritative and precise definition of flow analysis. It is thorough and rig-
orous, at the risk of slight rigor mortis. Shivers’ dissertation, Control-Flow
Analysis of Higher-Order Languages, contains the original development of
kCFA and is replete with intuitions and explanations.

• logic and proof theory.

The reader should be comfortable with the basics of propositional logic,
such as De Morgan duality, modus ponens, etc. The reader is also assumed
to be comfortable with sequent calculi, and in particular sequents for linear
logic. Girard et al. (1989) provides a solid and accessible foundation.

All of the theorems will be accessible, but without this background, only a
small number of the more supplemental proofs will be inaccessible. Fear
not if this is not your cup of meat.
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Chapter 1

Introduction

We analyze the computational complexity of flow analysis for higher-order lan-
guages, yielding a number of novel insights: kCFA is provably intractable; 0CFA
and its approximations are inherently sequential; and analysis and evaluation of
linear programs are equivalent.

1.1 Overview

Predicting the future is hard.

Nevertheless, such is the business of an optimizing compiler: it reads in an input
program, predicts what will happen when that program is run, and then—based
on that prediction—outputs an optimized program.

Often these predictions are founded on semantics-based program analysis (Cousot
and Cousot 1977, 1992; Muchnick and Jones 1981; Nielson et al. 1999), which
aims to discover the run-time behavior of a program without actually running it
(Muchnick and Jones 1981, page xv). But as a natural consequence of Rice’s
theorem (1953), a perfect prediction is almost always impossible. So tractable
program analysis must necessarily trade exact evaluation for a safe, computable
approximation to it. This trade-off induces a fundamental dichotomy at play in
the design of program analyzers and optimizing compilers. On the one hand,
the more an analyzer can discover about what will happen when the program is
run, the more optimizations the compiler can perform. On the other, compilers

2



CHAPTER 1. INTRODUCTION

are generally valued not only for producing fast code, but doing so quickly and
efficiently; some optimizations may be forfeited because the requisite analysis is
too difficult to do in a timely or space-efficient manner.

As an example in the extreme, if we place no limit on the resources consumed by
the compiler, it can perfectly predict the future—the compiler can simply simulate
the running of the program, watching as it goes. When (and if) the simulation
completes, the compiler can optimize with perfect information about what will
happen when the program is run. With good reason, this seems a bit like cheating.

So at a minimum, we typically expect a compiler will eventually finish working
and produce an optimized program. (In other words, we expect the compiler to
compute within bounded resources of time and space). After all, what good is an
optimizing compiler that never finishes?

But by requiring an analyzer to compute within bounded resources, we have nec-
essarily and implicitly limited its ability to predict the future.

As the analyzer works, it must use some form of approximation; knowledge must
be given up for the sake of computing within bounded resources. Further resource-
efficiency requirements may entail further curtailing of knowledge that a program
analyzer can discover. But the relationship between approximation and efficiency
is far from straightforward. Perhaps surprisingly, as has been observed empirically
by researchers (Wright and Jagannathan 1998; Jagannathan et al. 1998; Might
and Shivers 2006b), added precision may avoid needless computation induced by
approximation in the analysis, resulting in computational savings—that is, better
information can often be produced faster than poorer information. So what exactly
is the analytic relationship between forfeited information and resource usage for
any given design decision?

In trading exact evaluation for a safe, computable approximation to it, analysis
negotiates a compromise between complexity and precision. But what exactly are
the trade-offs involved in this negotiation? For any given design decision, what is
given up and what is gained? What makes an analysis rich and expressive? What
makes an analysis fast and resource-efficient?

We examine these questions in the setting of flow analysis (Jones 1981; Sestoft
1988, 1989; Shivers 1988, 1991; Midtgaard 2007), a fundamental and ubiquitous
static analysis for higher-order programming languages. It forms the basis of al-
most all other analyses and is a much-studied component of compiler technology.

3



CHAPTER 1. INTRODUCTION

Flow analysis answers basic questions such as “what functions can be applied?,”
and “to what arguments?” These questions specify well-defined, significant deci-
sion problems, quite apart from any algorithm proposed to solve them. This disser-
tation examines the inherent computational difficulty of deciding these problems.

If we consider the most useful analysis the one which yields complete and per-
fectly accurate information about the running of a program, then clearly this anal-
ysis is intractable—it consumes the same computational resources as running the
program. At the other end of the spectrum, if the least useful analysis yields no
information about the running of a program, then this analysis is surely feasible,
but useless.

If the design of software is really a science, we have to understand the trade-offs
between the running time of static analyzers, and the accuracy of their computa-
tions.

There is substantial empirical experience, which gives a partial answer to these
questions. However, despite being the fundamental analysis of higher-order pro-
grams, despite being the subject of investigation for over twenty-five years, and
the great deal of expended effort deriving clever ways to tame the cost, there has
remained a poverty of analytic knowledge on the complexity of flow analysis, the
essence of how it is computed, and where the sources of approximation occur that
make the analysis work.

This dissertation is intended to repair such lacunae in our understanding.

1.2 Summary of Results

• Normalization and analysis are equivalent for linear programs.

• 0CFA and other monovariant flow analyses are complete for PTIME.

• 0CFA of typed, η-expanded programs is complete for LOGSPACE.

• kCFA is complete for EXPTIME for all k > 0.

4



CHAPTER 1. INTRODUCTION

1.3 Details

1.3.1 Linearity, Analysis and Normalization

• Normalization and analysis are equivalent for linear programs.

Although variants of flow analysis abound, we identify a core language, the linear
λ-calculus, for which all of these variations coincide. In other words, for linear
programs—those written to use each bound variable exactly once—all known flow
analyses will produce equivalent information.

It is straightforward to observe that in a linear λ-term, each abstraction λx.e can
be applied to at most one argument, and hence the abstracted value can be bound
to at most one argument. Generalizing this observation, analysis of a linear λ-
term coincides exactly with its evaluation. So not only are the varying analyses
equivalent to each other on linear terms, they are all equivalent to evaluation.

Linearity is an equalizer among variations of static analysis, and a powerful tool
in proving lower bounds.

1.3.2 Monovariance and PTIME

• 0CFA and other monovariant flow analyses are complete for PTIME.

By definition, a monovariant analysis (e.g. 0CFA), does not distinguish between
occurrences of the same variable bound in different calling contexts. But the
distinction is needless for linear programs and analysis becomes evaluation under
another name. This opens the door to proving lower bounds on the complexity
of the analysis by writing—to the degree possible—computationally intensive,
linear programs, which will be faithfully executed by the analyzer rather than the
interpreter.

We rely on a symmetric coding of Boolean logic in the linear λ-calculus to simu-
late circuits and reduce the 0CFA decision problem to the canonical PTIME prob-
lem, the circuit value problem. This shows, since the inclusion is well-known,
that 0CFA is complete for PTIME. Consequently, 0CFA is inherently sequential
and there is no fast parallel algorithm for 0CFA (unless PTIME = NC). Moreover,
this remains true for a number of further approximations to 0CFA.

5



CHAPTER 1. INTRODUCTION

The best known algorithms for computing 0CFA are often not practical for large
programs. Nonetheless, information can be given up in the service of quickly
computing a necessarily less precise analysis. For example, by forfeiting 0CFA’s
notion of directionality, algorithms for Henglein’s simple closure analysis run in
near linear time (1992). Similarly, by explicitly bounding the number of passes
the analyzer is allowed over the program, as in Ashley and Dybvig’s sub-0CFA
(1998), we can recover running times that are linear in the size of the program. But
the question remains: Can we do better? For example, is it possible to compute
these less precise analyses in logarithmic space? We show that without profound
combinatorial breakthroughs (PTIME = LOGSPACE), the answer is no. Simple
closure analysis, sub-0CFA, and other analyses that approximate or restrict 0CFA,
require—and are therefore, like 0CFA, complete for—polynomial time.

1.3.3 0CFA with η-Expansion and LOGSPACE

• 0CFA of typed, η-expanded programs is complete for LOGSPACE.

We identify a restricted class of functional programs whose 0CFA decision prob-
lem may be simpler—namely, complete for LOGSPACE. Consider programs that
are simply typed, and where a variable in the function position or the argument
position of an application is fully η-expanded. This case—especially, but not only
when the programs are linear—strongly resembles multiplicative linear logic with
atomic axioms.

We rely on the resemblance to bring recent results on the complexity of normal-
ization in linear logic to bear on the analysis of η-expanded programs resulting in
a LOGSPACE-complete variant of 0CFA.

1.3.4 kCFA and EXPTIME

• kCFA is complete for EXPTIME for all k > 0.

We give an exact characterization of the computational complexity of the kCFA
hierarchy. For any k > 0, we prove that the control flow decision problem is
complete for deterministic exponential time. This theorem validates empirical
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CHAPTER 1. INTRODUCTION

observations that such control flow analysis is intractable. It also provides more
general insight into the complexity of abstract interpretation.

A fairly straightforward calculation shows that kCFA can be computed in expo-
nential time. We show that the naive algorithm is essentially the best one. There
is, in the worst case—and plausibly, in practice—no way to tame the cost of the
analysis. Exponential time is required.

7



Chapter 2

Foundations

The aim of flow analysis is to safely approximate an answer the question:1

For each function application, which functions may be applied?

Analysis can easily be understood as the safe approximation to program evalua-
tion. It makes sense, then, to first consider evaluation in detail. In the following
sections, an evaluation function (E) is defined, from which an instrumented varia-
tion (I) is derived and abstracted to obtain the abstract evaluator (A). Finally, we
review basic concepts from complexity theory and sketch our approach to proving
lower bounds.

2.1 Structure and Interpretation

The meaningful phrases of a program are called expressions, the process of ex-
ecuting or interpreting these expressions is called evaluation, and the result of
evaluating an expression is called a value (Reynolds 1972).

We will consider a higher-order applicative programming language based on the
λ-calculus, in which evaluation is environment based and functional values are
1See for example the transparencies accompanying Chapter 3 “Control Flow Analysis” of Nielson
et al. (1999): http://www2.imm.dtu.dk/∼riis/PPA/ppa.html
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represented using closures. The syntax of the language is given by the following
grammar:

Exp e ::= x | e e | λx.e expressions

Note to the reader: This may seem a rather minimal programming
language and you may wonder what the broader applicability of these
results are in the face of other language features. But as noted earlier,
this dissertation is concerned with lower bounds on static analysis.
By examining a minimal, core language, all results will immediately
apply to any language which includes this core. In other words, the
more restricted the subject language, the broader the applicability.

It may be that the lower bound can be improved in the presence of
some language features, that is, the given set of features may make
analysis provably harder, but it certainly can not make it any easier.2

Following Landin (1964), substitution is modelled using environments. Proce-
dures will be represented as closures, a λ-term together with its lexical environ-
ment, which closes over the free variables in the term, binding variables to values.

We use ρ to range over environments (mappings from variables to closures), and v
to range over closures (pairs consisting of a term and an environment that closes
the term). The empty environment (undefined on all variables) is denoted •, and
we occasionally abuse syntax and write the closed term e in place of the closure
〈e, •〉. Environment extension is written ρ[x 7→ v] and we write •[x 7→ v] as
[x 7→ v] and [x1 7→ v1] . . . [xn 7→ vn] as [x1 7→ v1, . . . , xn 7→ vn].

Env ρ ∈ Var ⇀ Val environments
Val v ∈ 〈Exp,Env〉 closures

2This is to be contrasted with, for example, a type soundness theorem, where it is just the opposite:
adding new language feature may revoke soundness.

For similar remarks, see the discussion in section 2 of Reps (1996) concerning the benefits of
formulating an analysis problem in “trimmed-down form,” which not only leads to a wider appli-
cability of the lower bounds, but also “allows one to gain greater insight into exactly what aspects
of an interprocedural-analysis problem introduce what computational limitations on algorithms
for these problems.”

In other words, lower bounds should be derived not by piling feature on top of feature, but by
removing the weaknesses and restrictions that make additional features appear necessary.

9
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E : Exp× Env ⇀ Val

EJxKρ = ρ(x)
EJλx.eKρ = 〈λx.e, ρ′〉

where ρ′ = ρ� fv(λx.e)
EJe1e2Kρ = let 〈λx.e0, ρ

′〉 = EJe1Kρ in
let v = EJe2Kρ in
EJe0Kρ′[x 7→ v]

Figure 2.1: Evaluator E .

The meaning of an expression is given in terms of an evaluation function, or in-
terpreter. Following Abelson and Sussman (1996, Chapter 4, “Metalinguistic Ab-
straction”), an interpreter is defined as follows:

An evaluator (or interpreter) for a programming language is a pro-
cedure that, when applied to an expression of the language, performs
the actions required to evaluate that expression.

The evaluation function for the language is given in Figure 2.1. We say e evaluates
to v under environment ρ iff EJeKρ = v and computing the evaluation function
defines our notion of the “running of a program.” Some examples of evaluation:

EJλx.xK• = 〈λx.x, •〉
EJ(λx.λz.x)(λy.y)K• = 〈λz.x, [x 7→ 〈λy.y, •〉]〉

EJ(λf.ff(λy.y))(λx.x)K• = 〈λy.y, •〉

This gives us a mostly extensional view of program behaviour—evaluation maps
programs to values, but offers little information regarding how this value was
computed. For the sake of program optimization it is much more useful to know
about operational (or intensional) properties of programs. These properties are
formulated by appealing to an “instrumented interpreter,” which is the subject
of the next section. Intuitively, the instrumented evaluator works just like the
un-instrumented evaluator, but additionally maintains a complete history of the
operations carried out during the running of the program.

10
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2.2 Instrumented Interpretation

Instrumented (or concrete) interpretation carries out the running of program while
maintaining a trace of the operations performed, thus providing an operational
history of evaluation. A suitable reformulation of the original definition of an
evaluator to incorporate instrumentation is then:

An instrumented evaluator (or instrumented interpreter) for a pro-
gramming language is a procedure that, when applied to an expres-
sion of the language, performs and records the actions required to
evaluate that expression.

Exactly which actions should be record will vary the domain of any given static
analysis and there is no universal notion of a program trace, but for flow analysis,
the interesting actions are:

• Every time the value of a subexpression is computed, record its value and
the context in which it was evaluated.

• Every time a variable is bound, record the value and context in which it was
bound.

These actions are recorded in a cache, and there is one for each kind of action:

C : Lab×∆ ⇀ Val

r : Var×∆ ⇀ Val

Cache = (Lab×∆ ⇀ Val)× (Var×∆ ⇀ Val)

The C cache records the result, or returned value, of each subcomputation, and
the r cache records each binding of a variable to a value. Given the label of a
subexpression (Lab) and a description of the context (∆), C returns the value
produced by that subexpression evaluated in that context. Given the name of a
variable (Var) and a description of the context (∆), r returns the value bound to
that variable in that context. The C cache is a partial function since a subexpres-
sion 1) may not produce a value, it may diverge, or 2) may not be evaluated in the
given context. The r cache is partial for analogous reasons.
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The set Lab is used to index subexpressions. It can easily be thought of as the
implicit source location of the expression, but our formalism will use an explicit
labelling scheme. We use ` to range over labels. The syntax of the source language
is given by the following grammar, and programs are assumed to be uniquely
labelled:

Exp e ::= t` expressions (or labeled terms)
Term t ::= x | (e e) | (λx.e) terms (or unlabeled expressions)

Irrelevant labels are frequently omitted for presentation purposes.

The set ∆ consists of contours, which are strings of labels from application nodes
in the abstract syntax of the program. A string of application labels describes the
context under which the term evaluated.

A variable may be bound to any number of values during the course of evalu-
ation. Likewise, a subexpression that occurs once syntactically may evaluate to
any number of values during evaluation. So asking about the flows of a subexpres-
sion is ambiguous without further information. Consider the following example,
where True and False are closed, syntactic values:

(λf.f(f True))(λy.False)

During evaluation, y gets bound to both True and False—asking “what was y
bound to?” is ambiguous. But let us label the applications in our term:

((λf.(f(f True)1)2)(λy.False))3

Notice that y is bound to different values within different contexts. That is, y
is bound to True when evaluating the application labeled 1, and y is bound to
False when evaluating the application labeled 2. Both of these occur while
evaluating the outermost application, labeled 3. A string of these application la-
bels, called a contour, uniquely describes the context under which a subexpression
evaluates. Adopting the common convention of writing a context as an expression
with a hole “[ ]” in it (Felleisen and Flatt 2009), the following contours describe
the given contexts:

321 describes ((λf.(f [ ]1)2)(λy.False))3

32 describes ((λf.[ ]2)(λy.False))3

So a question about what a subexpression evaluates to within a given context has
an unambiguous answer. The interpreter, therefore, maintains an environment that

12
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maps each variable to a description of the context in which it was bound. Simi-
larly, flow questions about a particular subexpression or variable binding must be
accompanied by a description of a context. Returning to the example, the binding
cache would give r(y, 321) = True and r(y, 32) = False.

The set Val consists of closures, however the environment component of the clo-
sures are non-standard. Rather than mapping variables to values, these environ-
ments map variables to contours; the contour describes the context in which the
variable was bound, so the value may be retrieved from the r cache. In other words,
these environments include an added layer of indirection through the cache: vari-
ables are mapped not to their values but the location of their definition site, where
the value can be found.

So we have the following data definitions:

δ ∈ ∆ = Lab? contours
v ∈ Val = Term× Env (contour) values
ρ ∈ Env = Var ⇀ ∆ (contour) environments

Note that this notation overloads the meaning of Val, Exp, and Env with that
given in the previous section. It should be clear from setting which is meant, and
when both meanings need to be used in the same context, the latter will be refered
to as contour values and contour environments.

The cache is computed by the instrumented interpreter, I, the instrumented, in-
tentional analog of E . It can be concisely and intuitively written as an imperative
program that mutates an initially empty cache, as given in Figure 2.2.

IJt`Kρ
δ evaluates t and writes the result of evaluation into the C cache at location

(`, δ). The notation C(`, δ)← v means that the cache is mutated so that C(`, δ) =
v, and similarly for r(x, δ) ← v. The type Unit is used here to emphasize the
imperative nature of the instrumented evaluator; no meaningful return value is
produced, the evaluator is run only for effect on the caches. The notation δ`
denotes the concatenation of contour δ and label `. The symbol ε denotes the
empty contour.

We interpret C(`, δ) = v as saying, “the expression labeled ` evaluates to v in the
context described by δ,” and r(x, δ) = v as “the variable x is bound to v in the
context described by δ.” Conversely, we say “v flows to the expression labelled `
into the context described by δ,” and “v flows to the binding of x in the context
described by δ,” respectively. We refer to a fact such as, C(`, δ) = v or r(x, δ) = v,

13
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I : Exp× Env ×∆ ⇀ Unit

IJx`Kρ
δ = C(`, δ)← r(x, ρ(x))

IJ(λx.e)`Kρ
δ = C(`, δ)← 〈λx.e, ρ′〉

where ρ′ = ρ� fv(λx.e)
IJ(t`1t`2)`Kρ

δ = IJt`1Kρ
δ ; IJt`2K

ρ
δ ;

let 〈λx.t`0 , ρ′〉 = C(`1, δ) in
r(x, δ`)← C(`2, δ);

IJt`0Kρ′[x 7→δ`]
δ` ;

C(`, δ)← C(`0, δ`)

Figure 2.2: Instrumented evaluator I, imperative style.

as a flow. The instrumented interpreter works by accumulating a set of flows as
they occur during evaluation.

Notice that this evaluator does not return values—it writes them into the cache: if
the expression t` evaluates in the contour δ to v, then C(`, δ) is assigned v. When
the value of a subexpression is needed, as in the application case, the subexpres-
sion is first interpreted (causing its value to be written in the cache) and subse-
quently retrieved from the C cache. When the value of a variable is needed, it is
retrieved from the r cache, using the contour environment to get the appropriate
binding.

In other words, C is playing the role of a global return mechanism, while r is
playing the role of a global environment.

Although the evaluator is mutating the cache, each location is written into just
once. A straight-forward induction proof shows that the current label together
with the current contour—which constitute the cache address that will be written
into—forms a unique string.

Returning to the earlier example, the cache constructed by

IJ((λf.(f(f True)1)2)(λy.False))3K•ε

includes the following entries:

r(f, 3) = λy.False
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r(y, 321) = True

r(y, 32) = False

C(1, 32) = λy.False

C(3, ε) = False

The evaluator can be written in a functional style by threading the cache through
the computation as seen in Figure 2.3.

I : Exp× Env ×∆×Cache ⇀ Cache

IJx`Kρ
δ C, r = C[(`, δ) 7→ r(x, ρ(x))], r

IJ(λx.e)`Kρ
δ C, r = C[(`, δ) 7→ 〈λx.e, ρ′〉], r

where ρ′ = ρ� fv(λx.e)
IJ(t`1t`2)`Kρ

δ C, r = let C1, r1 = IJt`1Kδ
ρ C, r in

let C2, r2 = IJt`2Kδ
ρ C1, r1 in

let 〈λx.t`0 , ρ′〉 = C2(`1, δ) in
let r3 = r2[(x, δ`) 7→ C3(`2, δ)] in
let C3, r4 = IJt`0Kδ`

ρ′[x 7→δ`] C2, r3 in
let C4 = C3[(`, δ) 7→ C3(`0, δ`)] in

C4, r4

Figure 2.3: Instrumented evaluator I, functional style.

In a more declarative style, we can write a specification of acceptable caches; a
cache is acceptable iff it records at least all of the flows which occur during instru-
mented evaluation. The smallest cache satisfying this acceptability relation is the
one that is computed by the above interpreter, clearly. The acceptability relation
is given in Figure 2.4. It is same cache acceptability relation can be obtained from
that given by Nielson et al. (1999, Table 3.10, page 192) for kCFA by letting k
be arbitrarily large. (Looking ahead, the idea of kCFA is that the evaluator will
begin to lose information and approximate evaluation after a contour has reached
a length of k. If k is sufficiently large, approximation never occurs. So the accept-
ability relation of Figure 2.4 can also be seen as the specification of “∞CFA”. For
any program that terminates, there is a k such that performing kCFA results in a
cache meeting the specification of Figure 2.4. In other words, for any program
that halts, there is a k such that kCFA runs it.)
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C, r |=ρ
δ x` iff C(`, δ) = r(x, ρ(x))

C, r |=ρ
δ (λx.e)` iff C(`, δ) = 〈λx.e, ρ′〉

where ρ′ = ce� fv(λx.e)
C, r |=ρ

δ (t`1 t`2)` iff C |=ρ
δ t`1 ∧ C |=ρ

δ t`2 ∧
let 〈λx.t`0 , ρ′〉 = C(`1, δ) in

r(x, δ`) = C(`2, δ) ∧
C, r |=ρ′[x 7→δ`]

δ` t`0 ∧
C(`, δ) = C(`0, δ`)

Figure 2.4: Exact cache acceptability, or Instrumented evaluator I, declarative
style.

There may be a multitude of acceptable analyses for a given program, so caches
are partially ordered by:

C v C′ iff ∀`, δ : C(`, δ) = v ⇒ C′(`, δ) = v
r v r′ iff ∀x, δ : r(x, δ) = v ⇒ r′(x, δ) = v

Generally, we are concerned only with the least such caches with respect to the
domain of variables and labels found in the given program of interest.

Clearly, because constructing such a cache is equivalent to evaluating a program,
it is not effectively computable.

All of the flow analyses considered in this dissertation can be thought of as an ab-
straction (in the sense of being a computable approximation) to this instrumented
interpreter, which not only evaluates a program, but records a history of flows.

2.3 Abstracted Interpretation

Computing a complete program trace can produce an arbitrarily large cache. One
way to regain decidability is to bound the size of the cache. This is achieved in
kCFA by bounding the length of contours to k labels.

If during the course of evaluation, or more appropriately analysis, the contour is
extended to exceed k labels, the analyzer will truncate the string, keeping the k
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most recent labels.

But now that the cache size is bounded, a sufficiently large computation will ex-
haust the cache. Due to truncation, the uniqueness of cache locations no longer
holds and there will come a point when a result needs to be written into a location
that is already occupied with a different value. If the analyzer were to simply over-
write the value already in that location, the analysis would be unsound. Instead
the analyzer must consider both values as flowing out of this point.

This in turn can lead to further approximation. Suppose a function application
has two values given for flow analysis of the operator subterm and another two
values given for the operand. The analyzer must consider the application of each
function to each argument.

kCFA is a safe, computable approximation to this instrumented interpreter; it is a
kind of abstract interpretation (Cousot and Cousot 1977; Jones and Nielson 1995;
Nielson et al. 1999). Rather than constructing an exact cache C, r, it constructs an
abstract cache Ĉ, r̂:

Ĉ : Lab×∆→ V̂al

r̂ : Var×∆→ V̂al

Ĉache = (Lab×∆→ V̂al)× (Var×∆→ V̂al)

which maps labels and variables, not to values, but to sets of values—abstract
values:

v̂ ∈ V̂al = P(Term× Env) abstract values.

Approximation arises from contours being bounded at length k. If during the
course of instrumented evaluation, the length of the contour would exceed length
k, then the kCFA abstract interpreter will truncate it to length k. In other words,
only a partial description of the context can be given, which results in ambiguity.
A subexpression may evaluate to two distinct values, but within contexts which are
only distinguished by k+1 labels. Questions about which value the subexpression
evaluates to can only supply k labels, so the answer must be both, according to a
sound approximation.

When applying a function, there is now a set of possible closures that flow into
the operator position. Likewise, there can be a multiplicity of arguments. What is
the interpreter to do? The abstract interpreter must apply all possible closures to
all possible arguments.
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The abstract interpreter A, the imprecise analog of I, is given in Figure 2.5 using
the concise imperative style. We write Ĉ(`, δ)← v̂ (or r̂(x, δ)← v̂) to indicate an

Ak : Exp× Env ×∆→ Unit

AkJx`Kρ
δ = Ĉ(`, δ)← r̂(x, ρ(x))

AkJ(λx.e)`Kρ
δ = Ĉ(`, δ)← {〈λx.e, ρ′〉}

where ρ′ = ρ� fv(λx.e)
AkJ(t`1t`2)`Kρ

δ = AkJt`1Kρ
δ ;AkJt`2Kρ

δ ;

for each 〈λx.t`0 , ρ′〉 in Ĉ(`1, δ) do
r̂(x, dδ`ek)← Ĉ(`2, δ);

AkJt`0K
ρ′[x 7→dδ`ek]
dδ`ek ;

Ĉ(`, δ)← Ĉ(`0, dδ`ek)

Figure 2.5: Abstract evaluator A, imperative style.

updated cache where `, δ (resp., x, δ) maps to Ĉ(`, δ) ∪ v̂ (resp., r̂(`, δ) ∪ v̂). The
notation dδek denotes δ truncated to the rightmost (i.e., most recent) k labels.

There are many ways the concise imperative abstract evaluator can be written in
a more verbose functional style, and this style will be useful for proofs in the
following sections.

Compared to the exact evaluator, contours similarly distinguish evaluation within
contexts described by as many as k application sites: beyond this, the distinction is
blurred. The imprecision of the analysis requires thatA be iterated until the cache
reaches a fixed point, but care must taken to avoid looping in an iteration since a
single iteration of AkJeKρ

δ may in turn make a recursive call to AkJeKρ
δ under the

same contour and environment. This care is the algorithmic analog of appealing to
the co-inductive hypothesis in judging an analysis acceptable (described below).

We interpret Ĉ(`, δ) = {v, . . .} as saying, “the expression labeled ` may evaluate
to v in the context described by δ,” and r(x, δ) = v as “the variable x is may be
bound to v in the context described by δ.” Conversely, we say “v flows to the
expression labelled ` into the context described by δ” and each {v, . . .} “flows
out of the expression labelled ` in the context described by δ,” and “v flows to
the binding of x in the context described by δ,” respectively. We refer to a fact
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Ak : Exp× Env ×∆× Ĉache→ Ĉache

AkJx`Kρ
δ Ĉ, r̂ = Ĉ[(`, δ) 7→ r̂(x, ρ(x))], r̂

AkJ(λx.e)`Kρ
δ Ĉ, r̂ = Ĉ[(`, δ) 7→ {〈λx.e, ρ′〉}], r̂

where ρ′ = ρ� fv(λx.e)

AkJ(t`1 t`2)`Kρ
δ Ĉ, r̂ = Ĉ3[(`, δ) 7→ Ĉ3(`0, δ

′)], r̂3, where
δ′ = dδ`ek
Ĉ1, r̂1 = AkJt`1Kρ

δ Ĉ, r̂

Ĉ2, r̂2 = AkJt`2Kρ
δ Ĉ1, r̂1

Ĉ3, r̂3 =⊔bC2(`,δ)

〈λx.t`0 ,ρ′〉

(
AkJt`0K

ρ′[x 7→δ′]
δ′ Ĉ2, r̂2[(x, δ′) 7→ Ĉ2(`2, δ)]

)
Figure 2.6: Abstract evaluator A, functional style.

such as, Ĉ(`, δ) 3 v or r̂(x, δ) 3 v, as a flow. The abstract interpreter works
by accumulating a set of flows as they occur during abstract interpretation until
reaching a fixed point. Although this overloads the terminology used in describing
the instrumented interpreter, the notions are compatible and the setting should
make it clear which sense is intended.

An acceptable k-level control flow analysis for an expression e is written Ĉ, r̂ |=ρ
δ

e, which states that Ĉ, r̂ is an acceptable analysis of e in the context of the current
environment ρ and current contour δ (for the top level analysis of a program, these
will both be empty).

Just as done in the previous section, we can write a specification of acceptable
caches rather than an algorithm that computes. The resulting specification given
in Figure 2.7 is what is found, for example, in Nielson et al. (1999).

There may be a multitude of acceptable analyses for a given program, so caches
are partially ordered by:

Ĉ v Ĉ′ iff ∀`, δ : Ĉ(`, δ) = v̂ ⇒ v̂ ⊆ Ĉ′(`, δ)
r̂ v r̂′ iff ∀x, δ : r̂(x, δ) = v̂ ⇒ v̂ ⊆ r̂′(x, δ)

Generally, we are concerned only with the least such caches with respect to the
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Ĉ, r̂ |=ρ
δ x` iff r̂(x, ρ(x)) ⊆ Ĉ(`, δ)

Ĉ, r̂ |=ρ
δ (λx.e)` iff 〈λx.e, ρ′〉 ∈ Ĉ(`, δ)

where ρ′ = ce� fv(λx.e)

Ĉ, r̂ |=ρ
δ (t`1 t`2)` iff Ĉ, r̂ |=ρ

δ t`1 ∧ Ĉ, r̂ |=ρ
δ t`2∧

∀〈λx.t`0 , ρ′〉 ∈ Ĉ(`1, δ) :

Ĉ(`2, δ) ⊆ r̂(x, dδ`ek)∧
Ĉ, r̂ |=ce′[x 7→dδ`ek]

dδ`ek t`0∧
Ĉ(`0, dδ`ek) ⊆ Ĉ(`, δ)

Figure 2.7: Abstract cache acceptability, or Abstract evaluator A, declarative
style.

domain of variables and labels found in the given program of interest.

By bounding the contour length, the inductive proof that (`, δ) was unique for
any write into the cache was invalidated. Similarly, induction can no longer
be relied upon for verification of acceptability. It may be the case that proving
Ĉ, r̂ |=ρ

δ t` obligates proofs of other propositions, which in turn rely upon verifica-
tion of Ĉ, r̂ |=ρ

δ t`. Thus the acceptability relation is defined co-inductively, given
by the greatest fixed point of the functional defined according to the following
clauses of Figure 2.7. Proofs by co-induction would allow this later obligation to
be dismissed by the co-inductive hypothesis.

Fine print: To be precise, we take as our starting point uniform kCFA rather
than a kCFA in which,

Ĉache = (Lab× Env→ V̂al)× (Var× Env→ V̂al)

The differences are immaterial for our purposes. See Nielson et al. (1999) for
details and a discussion on the use of coinduction in specifying static analyses.

Having established the foundations of evaluation and analysis, we now turn to the
foundations of our tools and techniques employed in the investigation of program
analysis.
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2.4 Computational Complexity

2.4.1 Why a Complexity Investigation?

Static analysis can be understood as a “technique for computing conservative ap-
proximations of solution for undecidable problems.”3 Complexity characteriza-
tions therefore offer a natural refinement of that understanding.

A fundamental question we need to be able to answer is this: what can be deduced
about a long-running program with a time-bounded analyzer? When we statically
analyze exponential-time programs with a polynomial-time method, there should
be a analytic bound on what we can learn at compile-time: a theorem delineating
how exponential time is being viewed through the compressed, myopic lens of
polynomial time computation.

We are motivated as well by yardsticks such as Shannon’s theorem from informa-
tion theory (Shannon 1948): specify a bandwidth for communication and an error
rate, and Shannon’s results give bounds on the channel capacity. We too have es-
sential measures: the time complexity of our analysis, the asymptotic differential
between that bound and the time bound of the program we are analyzing. There
ought to be a fundamental result about what information can be yielded as a func-
tion of that differential. At one end, if the program and analyzer take the same
time, the analyzer can just run the program to find out everything. At the other
end, if the analyzer does no work (or a constant amount of work), nothing can be
learned. Analytically speaking, what is in between?

In the closely related area of pointer analysis, computational complexity has played
a prominent role in the development and evaluation of analyses.4 It was the start-
ing point for the widely influential Landi and Ryder (1992), according to the au-
thors’ retrospective (2004).

The theory of computational complexity has proved to be a fruitful tool in relat-
ing seemingly disparate computational problems. Through notions of logspace

3Quoted from Michael Schwartzbach’s 2009 Static Analysis course description from University
of Aarhus (http://www.brics.dk/∼mis/static.html/, accessed June 3, 2009). The same sentiment is
expressed in Patrick Cousot’s 2005 MIT Abstract Interpretation lecture notes on undecidability,
complexity, automatic abstract termination proofs by semidefinite programming (http://web.mit.
edu/16.399/www/).

4See section 6.7 for details.
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reductions5 between problems, what may have appeared to be two totally unre-
lated problems can be shown to be, in fact, so closely related that a method for
efficiently computing solutions to one can be used as a method for efficiently com-
puting the other, and vice versa. For example, at first glance, 0CFA and circuit
evaluation have little to do with each other. Yet, as shown in this dissertation, the
two problems are intimately related; they are both complete for PTIME.

There are two fundamental relations a problem can have to a complexity class.
The problem can be included in the complexity class, meaning the problem is
no harder than the hardest problems in the class. Or, the problem can be a hard
problem within the class, meaning that no other problem in the class is harder than
this one. When a problem is both included and hard for a given class, it said to
be complete for that class; it is as hard as the hardest problems in the class, but no
harder.

Inclusion results establish feasibility of analysis—it tells us analysis can be per-
formed within some upper-bound on resources. These results are proven by con-
structing efficient and correct program analyzers, either by solving the analysis
problem directly or reducing it to another problem with a known inclusion.

Hardness results, on the other hand, establish the minimum resource requirements
to perform analysis in general. They can be viewed as lower-bounds on the dif-
ficulty of analysis, telling us, for example, when no amount of cleverness in al-
gorithm design will improve on the efficiency of performing analysis. So while
inclusion results have an existential form: “there exists an algorithm such that it
operates within these bounded resources,” hardness results have a universal form:
“for all algorithms computing the analysis, at least these resources can be con-
sumed.”

Whereas inclusion results require clever algorithmic insights applied to a program
analyzer, hardness results require clever exploitation of the analysis to perform
computational work.

Lower bounds are proved by giving reductions—efficient compilers—for trans-
forming instances of some problem that is known to be hard for a class, (e.g.
circuit evaluation and PTIME) into instances of a flow analysis problem. Such a
reduction to a flow analysis problem establishes a lower bound on the complexity

5Logspace reductions are essentially memory efficient translations between instances of problems.
The PL-theorist may be most comfortable thinking of these reductions as space-efficient compil-
ers.
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of flow analysis: solving the flow problem must be at least as hard as solving the
original problem, which is known to be of the hardest in the class.

The aim, then, is to solve hard problems by make principled use of the analysis.
From a programming language perspective, the analyzer can be regarded as an
evaluator of a language, albeit a language with implicit resource bounds and a
(sometimes) non-standard computational model. Lower bounds can be proved
by writing computationally intensive programs in this language. That is, proving
lower bounds is an exercise in clever hacking in the language of analysis.

For flow analysis, inclusion results are largely known. Simple algorithmic analysis
applied to the program analyzer is often sufficient to establish an upper bound.

Much work in the literature on flow analysis has been concerned with finding
more and more efficient ways to compute various program analyses. But while
great effort has been expended in this direction, there is little work addressing the
fundamental limits of this endeavour. Lower-bounds tell us to what extent this is
possible.

This investigation also provides insight into a more general subject: the complex-
ity of computing via abstract interpretation. It stands to reason that as the compu-
tational domain becomes more refined, so too should computational complexity.
In this instance, the domain is the size of the abstract cache Ĉ and the values
(namely, closures) that can be stored in the cache. As the cache size and num-
ber of closures increase6, so too should the complexity of computation. From a
theoretical perspective, we would like to understand better the trade-offs between
these various parameters.

Viewed from another perspective, hardness results can be seen as a characteriza-
tion of the expressiveness of an analysis; it is a measure of the work an analysis
is capable of doing. The complexity and expressivity of an analysis are two sides
of the same coin and analyses can be compared and characterized by the class
of computations each captures. In their definitive study, Nielson et al. (1999) re-
mark, “Program analysis is still far from being able to precisely relate ingredients
of different approaches to one another,” but we can use computational complexity
theory as an effective tool in relating analyses. Moreover, insights gleaned from
this understanding of analysis can inform future analysis design. To develop rich
analyses, we should expect larger and larger classes to be captured. In short: com-

6Observe that since closure environments map free variables to contours, the number of closures
increases when the contour length k is increased.
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putational complexity is a means to both organize and extend the universe of static
analyses.

Other research has shown a correspondence between 0CFA and certain type sys-
tems (Palsberg and O’Keefe 1995; Heintze 1995) and a further connection has
been made between intersection typing and kCFA (Mossin 1997b; Palsberg and
Pavlopoulou 2001). Work has also been done on relating the various flavors
of control flow analysis, such as 0CFA, kCFA, polymorphic splitting, and uni-
form kCFA (Nielson and Nielson 1997). Moreover, control flow analysis can be
computed under a number of different guises such as set-based analysis (Heintze
1994), closure analysis (Sestoft 1988, 1989), abstract interpretation (Shivers 1991;
Tang and Jouvelot 1994; Might and Shivers 2006a; Might 2007; Midtgaard and
Jensen 2008, 2009), and type and effect systems (Faxén 1995; Heintze 1995;
Faxén 1997; Banerjee 1997).

We believe a useful taxonomy of these and other static analyses can be derived
by investigating their computational complexity. Results on the complexity of
static analyses are way of understanding when two seemingly different program
analyses are in fact computing the same thing.

2.4.2 Complexity Classes

In this section, we review some basic definitions about complexity classes and
define the flow analysis problem.

A complexity class is specified by a model of computation, a mode of computa-
tion (e.g. deterministic, non-deterministic), the designation of a unit of work—a
resource used up by computation (e.g. time, space), and finally, a function f that
bounds the use of this resource. The complexity class is defined as the set of all
languages decided by some Turing machine M that for any input x operates in the
given mode within the bounds on available resources, at most f(|x|) units of work
(Papadimitriou 1994, page 139).

Turing machines are used as the model of computation, in both deterministic and
non-deterministic mode. Recall the formal definition of a Turing machine: a 7-
tuple

〈Q, Σ, Γ, δ, q0, qa, qr〉

where Q, Σ, and Γ are finite sets, Q is the set of machine states (and {q0, qa, qr} ⊆
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Q), Σ is the input alphabet, and Γ is the tape alphabet, where Σ ⊆ Γ. For a
deterministic machine, the transition function, δ, is a partial function that maps
the current machine state and tape contents under the head position to the next
machine state, a symbol to write on the tape under the head, and left or right shift
operation for moving the head. For a non-deterministic machine, the transition
function is actually a relation and may map each machine configuration to multiple
successor configurations. The states q0, qa, and qr are the machine’s initial, accept,
and reject states, respectively. Transitions consume one unit of time and space
consumption is measured by the amount of tape used.

Definition 1. Let f : N → N . We say that machine M operates within time f(n)
if, for any input string x, the time required by M on x is at most f(|x|) where |x|
denotes the length of string x. Function f(n) is a time bound for M .

Let g : N → N . We say that machine M operates within space g(n) if, for any
input string x, the space required for the work tape of M on x is at most g(|x|).
Function g(n) is a space bound for M .

Space bounds do not take into consideration the amount of space needed to repre-
sent the input or output of a machine, but only its working memory. To this end,
one can consider Turing machines with three tapes: an input, output and work
tape. (Such machines can be simulated by single tape Turing machines with an
inconsequential loss of efficiency). The input tape is read-only and contains the
input string. The work tape is initially empty and can be read from and written
to. The output tape, where the result of computation is written, is initially empty
and is write only. A space bound characterizes the size of the work only. See
Papadimitriou (1994, Sections 2.3–5) or Garey and Johnson (1979, Section 7.5)
for further details.

A complexity class is a set of languages representing decision problems that can
be decided within some specified bound on the resources used, typically time and
space. Suppose the decision problem can be decided by a deterministic Turing
machine operating in time (space) f(n), we say the problem is in DTIME(f(n))
(DSPACE(f(n))); likewise, if a problem can be decided by a non-deterministic
Turing machine operating in time f(n), we say the problem is in NTIME(f(n)).
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We make use of the following standard complexity classes:

LOGSPACE =
⋃

j>0 DSPACE(j log n)

⊆ PTIME =
⋃

j>0 DTIME(nj)

⊆ NPTIME =
⋃

j>0 NTIME(nj)

⊆ EXPTIME =
⋃

j>0 DTIME(2nj
)

In addition to the above inequalities, it is known that PTIME ⊂ EXPTIME.

What is the difficulty of computing within this hierarchy? What are the sources
of approximation that render such analysis tractable? We examine these questions
in relation to flow analysis problems, which are decision problems, computational
problems that require either a “yes” or “no” answer, and therefore are insensitive
to output size (it is just one bit).

The flow analysis decision problem we examine is the following:

Flow analysis decision problem: Given an expression e, an abstract value v, and
a pair (`, δ), does v flow into (`, δ) by this flow analysis?

2.5 Proving Lower Bounds: The Art of Exploitation

Program exploitation—a staple of hacking—is simply a clever way of making a
program do what you want it to do, even if it was designed to prevent that action
(Erickson 2008, page 115). This is precisely the idea in proving lower bounds,
too.

The program to be exploited, in this setting, is the static analyzer. What we would
like to do varies, but generally we want to exploit analysis to solve various com-
putationally difficult classes of problems. In some cases, what we want to do is
evaluate, rather than approximate, the program being analyzed. In this sense, we
truly subvert the analyzer by using it to carry out that which it was designed to
avoid (to discover without actually running (Muchnick and Jones 1981, page xv)).

The approach of exploiting analysis for computation manifests itself in two ways
in this dissertation:
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1. Subverting abstraction

The first stems from a observation that perhaps the languages of abstract
and concrete interpretation intersect. That is, abstract interpretation makes
approximations compared to concrete interpretation, but perhaps there is
a subset of programs on which no approximation is made by analysis. For
this class of programs, abstract and concrete interpretation are synonymous.
Such a language certainly exists for all of the flow analyses examined in
this dissertation. We conjecture that in general, for every useful abstract
interpretation, there is a subset of the analyzed language for which abstract
and concrete interpretation coincide. By identifying this class of programs,
lower bounds can be proved by programming within the subset.

One of the fundamental ideas of computer science is that “we can regard al-
most any program as the evaluator for some language” (Abelson and Suss-
man 1996, page 360). So it is natural to ask of any algorithm, what is the
language being evaluated? The question is particularly relevant when asked
of an abstract evaluator. We can gain insight into an analysis by comparing
the language of the abstract evaluator to the language of the concrete evalu-
ator.

So a program analysis itself can be viewed as a kind of programming lan-
guage, and an analyzer as a kind of evaluator. Because of the requisite
decidability of analysis, these languages will come with implicit bounds on
computational resources—if the analysis is decidable, these languages can-
not be Turing-complete. But lower bounds can be proved by clever hacking
within the unconventional language of analysis.

This approach is the subject of chapter 3.

2. Harnessing re-evaluation

The second way analysis can be exploited is to identify the sources of ap-
proximation in the analysis and instead of avoiding them, (turning the ab-
stract into the concrete as above), harness them for combinatorial power. In
this approach, lower bounds can be proved by programming the language of
the analysis in a way that has little to do with programming in the language
of concrete interpretation.

Researchers have made empirical observations that computing a more pre-
cise analysis is often cheaper than performing a less precise one. The
less precise analysis “yields coarser approximations, and thus induces more
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merging. More merging leads to more propagation, which in turn leads
to more reevaluation” (Wright and Jagannathan 1998). Might and Shivers
(2006b) make a similar observation: “imprecision reinforces itself during a
flow analysis through an ever-worsening feedback loop.” For the purposes
of proving lower bounds, we are able to harness this re-evaluation as a com-
putation engine.

This approach is the subject of chapter 5.
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Chapter 3

Monovariant Analysis and PTIME

The monovariant form of flow analysis defined over the pure λ-calculus has emerged
as a fundamental notion of flow analysis for higher-order languages, and some
form of flow analysis is used in most analyses for higher-order languages (Heintze
and McAllester 1997a).

In this chapter, we examine several of the most well-known variations of mono-
variant flow analysis: Shivers’ 0CFA (1988), Henglein’s simple closure analysis
(1992), Heintze and McAllester’s subtransitive flow analysis (1997a), Ashley and
Dybvig’s sub-0CFA (1998), Mossin’s single source/use analysis (1998), and oth-
ers.

In each case, evaluation and analysis are proved equivalent for the class of linear
programs and a precise characterization of the computational complexity of the
analysis, namely PTIME-completeness, is given.

3.1 The Approximation of Monovariance

To ensure tractability of any static analysis, there has to be an approximation of
something, where information is deliberately lost in the service of providing what
is left in a reasonable amount of time. A good example of what is lost during
monovariant static analysis is that the information gathered for each occurrence
of a bound variable is merged. When variable f occurs twice in function position
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with two different arguments,

(f v1) · · · (f v2)

a monovariant flow analysis will blur which copy of the function is applied to
which argument. If a function λz.e flows into f in this example, the analysis
treats occurrences of z in e as bound to both v1 and v2.

Shivers’ 0CFA is among the most well-known forms of monovariant flow anal-
ysis; however, the best known algorithm for 0CFA requires nearly cubic time in
proportion to the size of the analyzed program.

It is natural to wonder whether it is possible to do better, avoiding this bottle-
neck, either by improving the 0CFA algorithm in some clever way or by further
approximation for the sake of faster computation.

Consequently, several analyses have been designed to approximate 0CFA by trad-
ing precision for faster computation. Henglein’s simple closure analysis, for ex-
ample, forfeits the notion of directionality in flows. Returning to the earlier exam-
ple,

f(λx.e′) · · · f(λy.e′′)

simple closure analysis, like 0CFA, will blur λx.e′ and λy.e′′ as arguments to f ,
causing z to be bound to both. But unlike 0CFA, a bidirectional analysis such
as simple closure analysis will identify two λ-terms with each other. That is,
because both are arguments to the same function, by the bi-directionality of the
flows, λx.e′ may flow out of λy.e′′ and vice versa.

Because of this further curtailing of information, simple closure analysis enjoys
an “almost linear” time algorithm. But in making trade-offs between precision
and complexity, what has been given up and what has been gained? Where do
these analyses differ and where do they coincide?

We identify a core language—the linear λ-calculus—where 0CFA, simple closure
analysis, and many other known approximations or restrictions to 0CFA are ren-
dered identical. Moreover, for this core language, analysis corresponds with (in-
strumented) evaluation. Because analysis faithfully captures evaluation, and be-
cause the linear λ-calculus is complete for PTIME, we derive PTIME-completeness
results for all of these analyses.

Proof of this lower bound relies on the insight that linearity of programs subverts
the approximation of analysis and renders it equivalent to evaluation. We establish
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a correspondence between Henglein’s simple closure analysis and evaluation for
linear terms. In doing so, we derive sufficient conditions effectively characteriz-
ing not only simple closure analysis, but many known flow analyses computable
in less than cubic time, such as Ashley and Dybvig’s sub-0CFA, Heintze and
McAllester’s subtransitive flow analysis, and Mossin’s single source/use analysis.

By using a nonstandard, symmetric implementation of Boolean logic within the
linear lambda calculus, it is possible to simulate circuits at analysis-time, and as
a consequence, we prove that all of the above analyses are complete for PTIME.
Any sub-polynomial algorithm for these problems would require (unlikely) break-
through results in complexity, such as PTIME = LOGSPACE.

We may continue to wonder whether it is possible to do better, either by im-
proving the 0CFA algorithm in some clever way or by further approximation for
faster computation. However these theorems demonstrate the limits of both av-
enues. 0CFA is inherently sequential, and so is any algorithm for it, no matter
how clever. Designing a provably efficient parallel algorithm for 0CFA is as hard
as parallelizing all polynomial time computations. On the other hand, further
approximations, such as simple closure analysis and most other variants of mono-
variant flow analysis, make no approximation on a linear program. This means
they too are inherently sequential and no easier to parallelize.

3.2 0CFA

Something interesting happens when k = 0. Notice in the application rule of the
kCFA abstract evaluator of Figure 2.5 that environments are extended as ρ[x 7→
dδ`ek]. When k = 0, dδ`e0 = ε. All contour environments map to the empty con-
tour, and therefore carry no contextual information. As such, 0CFA is a “mono-
variant” analysis, analogous to simple-type inference, which is a monovariant type
analysis.

Since there is only one constant environment (the “everywhere ε” environment),
environments of section 2.3 can be eliminated from the analysis altogether and
the cache no longer needs a contour argument. Likewise, the set of abstract values
collapses from P(Term× Env) into P(Term).

The result of 0CFA is an abstract cache that maps each program point (i.e., label)
to a set of lambda abstractions which potentially flow into this program point at
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run-time:

Ĉ : Lab→ P(Term)
r̂ : Var→ P(Term)

Ĉache = (Lab→ P(Term))× (Var→ P(Term))

Caches are extended using the notation Ĉ[` 7→ s], and we write Ĉ[` 7→+ s] to
mean Ĉ[` 7→ (s∪ Ĉ(`))]. It is convenient to sometimes think of caches as mutable
tables (as we do in the algorithm below), so we abuse syntax, letting this notation
mean both functional extension and destructive update. It should be clear from
context which is implied.

The Analysis: We present the specification of the analysis here in the style of
Nielson et al. (1999). Each subexpression is identified with a unique superscript
label `, which marks that program point; Ĉ(`) stores all possible values flowing
to point `, r̂(x) stores all possible values flowing to the definition site of x. An
acceptable 0CFA analysis for an expression e is written Ĉ, r̂ |= e and derived
according to the scheme given in Figure 3.1.

Ĉ, r̂ |= x` iff r̂(x) ⊆ Ĉ(`)

Ĉ, r̂ |= (λx.e)` iff λx.e ∈ Ĉ(`)

Ĉ, r̂ |= (t`1 t`2)` iff Ĉ, r̂ |= t`1 ∧ Ĉ, r̂ |= t`2 ∧
∀λx.t`0 ∈ Ĉ(`1) :

Ĉ(`2) ⊆ r̂(x) ∧
Ĉ, r̂ |= t`0 ∧
Ĉ(`0) ⊆ Ĉ(`)

Figure 3.1: 0CFA abstract cache acceptability.

The |= relation needs to be coinductively defined since verifying a judgment
Ĉ, r̂ |= e may obligate verification of Ĉ, r̂ |= e′ which in turn may require ver-
ification of Ĉ, r̂ |= e. The above specification of acceptability, when read as a
table, defines a functional, which is monotonic, has a fixed point, and |= is de-
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fined coinductively as the greatest fixed point of this functional.1

Writing Ĉ, r̂ |= t` means “the abstract cache contains all the flow information for
program fragment t at program point `.” The goal is to determine the least cache
solving these constraints to obtain the most precise analysis. Caches are partially
ordered with respect to the program of interest:

Ĉ v Ĉ′ iff ∀` : Ĉ(`) ⊆ Ĉ′(`)
r̂ v r̂′ iff ∀x : r̂(x) ⊆ r̂′(x)

These constraints can be thought of as an abstract evaluator— Ĉ, r̂ |= t` simply
means evaluate t`, which serves only to update an (initially empty) cache.

A0Jx`K = Ĉ(`)← r̂(x)

A0J(λx.e)`K = Ĉ(`)← {λx.e}
A0J(t`1 t`2)`K = A0Jt`1K; A0Jt`2K;

for each λx.t`0 in Ĉ(`1) do
r̂(x)← Ĉ(`2);
A0Jt`0K;
Ĉ(`)← Ĉ(`0)

Figure 3.2: Abstract evaluator A0 for 0CFA, imperative style.

The abstract evaluatorA0J·K is iterated until the finite cache reaches a fixed point.

Fine Print: A single iteration ofA0JeK may in turn make a recursive callA0JeK
with no change in the cache, so care must be taken to avoid looping. This amounts
to appealing to the coinductive hypothesis Ĉ, r̂ |= e in verifying Ĉ, r̂ |= e. How-
ever, we consider this inessential detail, and it can safely be ignored for the pur-
poses of obtaining our main results in which this behavior is never triggered.

Since the cache size is polynomial in the program size, so is the running time, as
the cache is monotonic—values are put in, but never taken out. Thus the analysis
and any decision problems answered by the analysis are clearly computable within
polynomial time.
1See Nielson et al. (1999) for details and a thorough discussion of coinduction in specifying static
analyses.
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Lemma 1. The control flow problem for 0CFA is contained in PTIME.

Proof. 0CFA computes a binary relation over a fixed structure. The computation
of the relation is monotone: it begins as empty and is added to incrementally.
Because the structure is finite, a fixed point must be reached by this incremental
computation. The binary relation can be at most polynomial in size, and each
increment is computed in polynomial time.

An Example: Consider the following program, which we will return to discuss
further in subsequent analyses:

((λf.((f 1f 2)3(λy.y4)5)6)7(λx.x8)9)10

The least 0CFA is given by the following cache:

Ĉ(1) = {λx} Ĉ(6) = {λx, λy}
Ĉ(2) = {λx} Ĉ(7) = {λf}
Ĉ(3) = {λx, λy} Ĉ(8) = {λx, λy}
Ĉ(4) = {λy} Ĉ(9) = {λx}
Ĉ(5) = {λy} Ĉ(10) = {λx, λy}

r̂(f) = {λx}
r̂(x) = {λx, λy}
r̂(y) = {λy}

where we write λx as shorthand for λx.x8, etc.

3.3 Henglein’s Simple Closure Analysis

Simple closure analysis follows from an observation by Henglein some 15 years
ago “in an influential though not often credited technical report” (Midtgaard 2007,
page 4): he noted that the standard control flow analysis can be computed in
dramatically less time by changing the specification of flow constraints to use
equality rather than containment (Henglein 1992). The analysis bears a strong
resemblance to simple-type inference—analysis can be performed by emitting a
system of equality constraints and then solving them using unification, which can
be computed in almost linear time with a union-find data structure.

34



CHAPTER 3. MONOVARIANT ANALYSIS AND PTIME

Consider a program with both (f x) and (f y) as subexpressions. Under 0CFA,
whatever flows into x and y will also flow into the formal parameter of all abstrac-
tions flowing into f , but it is not necessarily true that whatever flows into x also
flows into y and vice versa. However, under simple closure analysis, this is the
case. For this reason, flows in simple closure analysis are said to be bidirectional.

The Analysis: The specification of the analysis is given in Figure 3.3.

Ĉ, r̂ |= x` iff r̂(x) = Ĉ(`)

Ĉ, r̂ |= (λx.e)` iff λx.e ∈ Ĉ(`)

Ĉ, r̂ |= (t`1 t`2)` iff Ĉ, r̂ |= t`1 ∧ Ĉ, r̂ |= t`2 ∧
∀λx.t`0 ∈ Ĉ(`1) :

Ĉ(`2) = r̂(x) ∧
Ĉ, r̂ |= t`0 ∧
Ĉ(`0) = Ĉ(`)

Figure 3.3: Simple closure analysis abstract cache acceptability.

The Algorithm: We write Ĉ[`↔ `′] to mean Ĉ[` 7→+ Ĉ(`′)][`′ 7→+ Ĉ(`)].

A0Jx`K = Ĉ(`)↔ r̂(x)

A0J(λx.e)`K = Ĉ(`)← {λx.e}
A0J(t`11 t`22 )`K = A0Jt`11 K; A0Jt`22 K;

for each λx.t`00 in Ĉ(`1) do
r̂(x)↔ Ĉ(`2);

A0Jt`00 K;
Ĉ(`)↔ Ĉ(`0)

The abstract evaluator A0J·K is iterated until a fixed point is reached.2 By similar
reasoning to that given for 0CFA, simple closure analysis is clearly computable
within polynomial time.

Lemma 2. The control flow problem for simple closure analysis is contained in
PTIME.
2The fine print of section 3.2 applies as well.
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An Example: Recall the example program of the previous section:

((λf.((f 1f 2)3(λy.y4)5)6)7(λx.x8)9)10

Notice that λx.x is applied to itself and then to λy.y, so x will be bound to both
λx.x and λy.y, which induces an equality between these two terms. Consequently,
everywhere that 0CFA was able to deduce a flow set of {λx} or {λy} will be
replaced by {λx, λy} under a simple closure analysis. The least simple closure
analysis is given by the following cache (new flows are underlined):

Ĉ(1) = {λx, λy} Ĉ(6) = {λx, λy}
Ĉ(2) = {λx, λy} Ĉ(7) = {λf}
Ĉ(3) = {λx, λy} Ĉ(8) = {λx, λy}
Ĉ(4) = {λy, λx} Ĉ(9) = {λx, λy}
Ĉ(5) = {λy, λx} Ĉ(10) = {λx, λy}

r̂(f) = {λx, λy}
r̂(x) = {λx, λy}
r̂(y) = {λy, λx}

3.4 Linearity: Analysis is Evaluation

It is straightforward to observe that in a linear λ-term, each abstraction λx.e can
be applied to at most one argument, and hence the abstracted value can be bound
to at most one argument.3 Generalizing this observation, analysis of a linear λ-
term coincides exactly with its evaluation. So not only are the analyses equivalent
on linear terms, but they are also synonymous with evaluation.

A natural and expressive class of such linear terms are the ones which implement
Boolean logic. When analyzing the coding of a Boolean circuit and its inputs,
the Boolean output will flow to a predetermined place in the (abstract) cache.
By placing that value in an appropriate context, we construct an instance of the
control flow problem: a function f flows to a call site a iff the Boolean output is
True.

Since the circuit value problem (Ladner 1975), which is complete for PTIME,
can be reduced to an instance of the 0CFA control flow problem, we conclude
this control flow problem is PTIME-hard. Further, as 0CFA can be computed in
polynomial time, the control flow problem for 0CFA is PTIME-complete.
3Note that this observation is clearly untrue for the nonlinear λ-term (λf.f(a(fb)))(λx.x), as x
is bound to b, and also to ab.
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E ′ : Exp× Env ⇀ Val

E ′Jx`K[x 7→ v] = v
E ′J(λx.e)`Kρ = 〈λx.e, ρ〉
E ′J(e1 e2)

`Kρ = let 〈λx.e0, ρ
′〉 = E ′Je1Kρ� fv(e1) in

let v = E ′Je2Kρ� fv(e2) in
E ′Je0Kρ′[x 7→ v]

Figure 3.4: Evaluator E ′.

One way to realize the computational potency of a static analysis is to subvert
this loss of information, making the analysis an exact computational tool. Lower
bounds on the expressiveness of an analysis thus become exercises in hacking,
armed with this newfound tool. Clearly the more approximate the analysis, the
less we have to work with, computationally speaking, and the more we have to
do to undermine the approximation. But a fundamental technique has emerged in
understanding expressivity in static analysis—linearity.

In this section, we show that when the program is linear—every bound variable
occurs exactly once—analysis and evaluation are synonymous.

First, we start by considering an alternative evaluator, given in Figure 3.4, which
is slightly modified from the one given in Figure 2.1. Notice that this evalu-
ator “tightens” the environment in the case of an application, thus maintaining
throughout evaluation that the domain of the environment is exactly the set of free
variables in the expression. When evaluating a variable occurrence, there is only
one mapping in the environment: the binding for this variable. Likewise, when
constructing a closure, the environment does not need to be restricted: it already
is.

This alternative evaluator E ′ will be useful in reasoning about linear programs,
but it should be clear that it is equivalent to the original, standard evaluator E of
Figure 2.1.

Lemma 3. EJeKρ⇐⇒ E ′JeKρ, when dom(ρ) = fv(e).

In a linear program, each mapping in the environment corresponds to the single
occurrence of a bound variable. So when evaluating an application, this tightening
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splits the environment ρ into (ρ1, ρ2), where ρ1 closes the operator, ρ2 closes the
operand, and dom(ρ1) ∩ dom(ρ2) = ∅.

Definition 2. Environment ρ linearly closes t (or 〈t, ρ〉 is a linear closure) iff t is
linear, ρ closes t, and for all x ∈ dom(ρ), x occurs exactly once (free) in t, ρ(x)
is a linear closure, and for all y ∈ dom(ρ), x does not occur (free or bound) in
ρ(y). The size of a linear closure 〈t, ρ〉 is defined as:

|t, ρ| = |t|+ |ρ|
|x| = 1

|(λx.t`)| = 1 + |t|
|(t`11 t`22 )| = 1 + |t1|+ |t2|

|[x1 7→ c1, . . . , xn 7→ cn]| = n +
∑

i

|ci|

The following lemma states that evaluation of a linear closure cannot produce a
larger value. This is the environment-based analog to the easy observation that
β-reduction strictly decreases the size of a linear term.

Lemma 4. If ρ linearly closes t and E ′Jt`Kρ = c, then |c| ≤ |t, ρ|.

Proof. Straightforward by induction on |t, ρ|, reasoning by case analysis on t.
Observe that the size strictly decreases in the application and variable case, and
remains the same in the abstraction case.

The function lab(·) is extended to closures and environments by taking the union
of all labels in the closure or in the range of the environment, respectively.

Definition 3. The set of labels in a given term, expression, environment, or closure
is defined as follows:

lab(t`) = lab(t) ∪ {`} lab(e1 e2) = lab(e1) ∪ lab(e2)
lab(x) = {x} lab(λx.e) = lab(e) ∪ {x}

lab(t, ρ) = lab(t) ∪ lab(ρ) lab(ρ) =
⋃

x∈dom(ρ) lab(ρ(x))

Definition 4. A cache Ĉ, r̂ respects 〈t, ρ〉 (written Ĉ, r̂ ` t, ρ) when,

1. ρ linearly closes t,
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2. ∀x ∈ dom(ρ).ρ(x) = 〈t′, ρ′〉 ⇒ r̂(x) = {t′} and Ĉ, r̂ ` t′, ρ′,

3. ∀` ∈ lab(t), Ĉ(`) = ∅, and

4. ∀x ∈ bv(t), r̂(x) = ∅.

Clearly, ∅ ` t, ∅ when t is closed and linear, i.e. t is a linear

A0 : Exp× Ĉache→ Ĉache

A0Jx`K Ĉ, r̂ = Ĉ[` 7→ r̂(x)], r̂

A0J(λx.e)`K Ĉ, r̂ = Ĉ[` 7→ {λx.e}], r̂
A0J(t`1 t`2)`K Ĉ, r̂ = Ĉ3[` 7→ Ĉ3(`0)], r̂3, where

δ′ = dδ`ek
Ĉ1, r̂1 = A0Jt`1K Ĉ, r̂

Ĉ2, r̂2 = A0Jt`2K Ĉ1, r̂1
Ĉ3, r̂3 =⊔bC2(`)

λx.t`0

(
A0Jt`0K Ĉ2, r̂2[x 7→ Ĉ2(`2)]

)
Figure 3.5: Abstract evaluator A0 for 0CFA, functional style.

Figure 3.5 gives a “cache-passing” functional algorithm for A0J·K of section 3.3.
It is equivalent to the functional style abstract evaluator of Figure 2.6 specialized
by letting k = 0. We now state and prove the main theorem of this section in
terms of this abstract evaluator.

Theorem 1. If Ĉ, r̂ ` t, ρ, Ĉ(`) = ∅, ` /∈ lab(t, ρ), E ′Jt`Kρ = 〈t′, ρ′〉, and
A0Jt`KĈ, r̂ = Ĉ′, r̂′, then Ĉ′(`) = {t′}, Ĉ′ ` t′, ρ′, and Ĉ′, r̂′ |= t`.

An important consequence is noted in Corollary 1.

Proof. By induction on |t, ρ|, reasoning by case analysis on t.

• Case t ≡ x.
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Since Ĉ ` x, ρ and ρ linearly closes x, thus ρ = [x 7→ 〈t′, ρ′〉] and ρ′ linearly
closes t′. By definition,

E ′Jx`Kρ = 〈t′, ρ′〉, and

A0Jx`KĈ = Ĉ[x↔ `].

Again since Ĉ ` x, ρ, Ĉ(x) = {t′}, with which the assumption Ĉ(`) = ∅
implies

Ĉ[x↔ `](x) = Ĉ[x↔ `](`) = {t′},

and therefore Ĉ[x ↔ `] |= x`. It remains to show that Ĉ[x ↔ `] ` t′, ρ′.
By definition, Ĉ ` t′, ρ′. Since x and ` do not occur in t′, ρ′ by linearity
and assumption, respectively, it follows that Ĉ[x 7→ `] ` t′, ρ′ and the case
holds.

• Case t ≡ λx.e0.

By definition,

E ′J(λx.e0)
`Kρ = 〈λx.e0, ρ〉,

A0J(λx.e0)
`KĈ = Ĉ[` 7→+ {λx.e0}],

and by assumption Ĉ(`) = ∅, so Ĉ[` 7→+ {λx.e0}](`) = {λx.e0} and there-
fore Ĉ[` 7→+ {λx.e0}] |= (λx.e0)

`. By assumptions ` /∈ lab(λx.e0, ρ) and
Ĉ ` λx.e0, ρ, it follows that Ĉ[` 7→+ {λx.e0}] ` λx.e0, ρ and the case holds.

• Case t ≡ t`11 t`22 . Let

E ′Jt1Kρ� fv(t`11 ) = 〈v1, ρ1〉 = 〈λx.t`00 , ρ1〉,
E ′Jt2Kρ� fv(t`22 ) = 〈v2, ρ2〉,

A0Jt1KĈ = Ĉ1, and

A0Jt2KĈ = Ĉ2.

Clearly, for i ∈ {1, 2}, Ĉ ` ti, ρ� fv(ti) and

1 +
∑

i

|t`i
i , ρ� fv(t`i

i )| = |(t`11 t`22 ), ρ|.

By induction, for i ∈ {1, 2} : Ĉi(`i) = {vi}, Ĉi ` 〈vi, ρi〉, and Ĉi |= t`i
i .

From this, it is straightforward to observe that Ĉ1 = Ĉ∪ Ĉ′1 and Ĉ2 = Ĉ∪ Ĉ′2
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where Ĉ′1 and Ĉ′2 are disjoint. So let Ĉ3 = (Ĉ1 ∪ Ĉ2)[x↔ `2]. It is clear that
Ĉ3 |= t`i

i . Furthermore,

Ĉ3 ` t0, ρ1[x 7→ 〈v2, ρ2〉],
Ĉ3(`0) = ∅, and

`0 /∈ lab(t0, ρ1[x 7→ 〈v2, ρ2〉]).

By Lemma 4, |vi, ρi| ≤ |ti, ρ� fv(ti)|, therefore

|t0, ρ1[x 7→ 〈v2, ρ2〉]| < |(t`11 t`22 )|.

Let

E ′Jt`00 Kρ1[x 7→ 〈v2, ρ2〉] = 〈v′, ρ′〉,
A0Jt`00 KĈ3 = Ĉ4,

and by induction, Ĉ4(`0) = {v′}, Ĉ4 ` v′, ρ′, and Ĉ4 |= v′. Finally, observe
that Ĉ4[` ↔ `0](`) = Ĉ4[` ↔ `0](`0) = {v′}, Ĉ4[` ↔ `0] ` v′, ρ′, and
Ĉ4[`↔ `0] |= (t`11 t`22 )`, so the case holds.

We can now establish the correspondence between analysis and evaluation.

Corollary 1. If Ĉ is the simple closure analysis of a linear program t`, then
E ′Jt`K∅ = 〈v, ρ′〉 where Ĉ(`) = {v} and Ĉ ` v, ρ′.

By a simple replaying of the proof substituting the containment constraints of
0CFA for the equality constraints of simple closure analysis, it is clear that the
same correspondence can be established, and therefore 0CFA and simple closure
analysis are identical for linear programs.

Corollary 2. If e is a linear program, then Ĉ is the simple closure analysis of e iff
Ĉ is the 0CFA of e.

Discussion: Returning to our earlier question of the computationally potent in-
gredients in a static analysis, we can now see that when the term is linear, whether
flows are directional and bidirectional is irrelevant. For these terms, simple clo-
sure analysis, 0CFA, and evaluation are equivalent. And, as we will see, when an
analysis is exact for linear terms, the analysis will have a PTIME-hardness bound.
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3.5 Lower Bounds for Flow Analysis

There are at least two fundamental ways to reduce the complexity of analysis. One
is to compute more approximate answers, the other is to analyze a syntactically
restricted language.

We use linearity as the key ingredient in proving lower bounds on analysis. This
shows not only that simple closure analysis and other flow analyses are PTIME-
complete, but the result is rather robust in the face of analysis design based on
syntactic restrictions. This is because we are able to prove the lower bound via
a highly restricted programming language—the linear λ-calculus. So long as the
subject language of an analysis includes the linear λ-calculus, and is exact for this
subset, the analysis must be at least PTIME-hard.

The decision problem answered by flow analysis, described in chapter 2, is for-
mulated for monovariant analyses as follows:

Flow Analysis Problem: Given a closed expression e, a term v, and label `, is
v ∈ Ĉ(`) in the analysis of e?

Theorem 2. If analysis corresponds to evaluation on linear terms, it is PTIME-
hard.

The proof is by reduction from the canonical PTIME-complete problem of circuit
evaluation (Ladner 1975):

Circuit Value Problem: Given a Boolean circuit C of n inputs and one output,
and truth values ~x = x1, . . . , xn, is ~x accepted by C?

An instance of the circuit value problem can be compiled, using only logarithmic
space, into an instance of the flow analysis problem. The circuit and its inputs
are compiled into a linear λ-term, which simulates C on ~x via evaluation—it
normalizes to true if C accepts ~x and false otherwise. But since the analysis
faithfully captures evaluation of linear terms, and our encoding is linear, the circuit
can be simulated by flow analysis.

The encodings work like this: tt is the identity on pairs, and ff is the swap.
Boolean values are either 〈tt,ff〉 or 〈ff,tt〉, where the first component is the
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“real” value, and the second component is the complement.

tt ≡ λp.let 〈x, y〉 = p in 〈x, y〉 True ≡ 〈tt,ff〉
ff ≡ λp.let 〈x, y〉 = p in 〈y, x〉 False ≡ 〈ff,tt〉

The simplest connective is Not, which is an inversion on pairs, like ff. A linear
copy connective is defined as:

Copy ≡ λb.let 〈u, v〉 = b in 〈u〈tt,ff〉, v〈ff,tt〉〉.

The coding is easily explained: suppose b is True, then u is identity and v twists;
so we get the pair 〈True,True〉. Suppose b is False, then u twists and v is
identity; we get 〈False,False〉. We write Copyn to mean n-ary fan-out—a
straightforward extension of the above.

The And connective is defined as follows:

And ≡ λb1.λb2.
let 〈u1, v1〉 = b1 in
let 〈u2, v2〉 = b2 in
let 〈p1, p2〉 = u1〈u2,ff〉 in
let 〈q1, q2〉 = v1〈tt, v2〉 in
〈p1, q1 ◦ p2 ◦ q2 ◦ ff〉.

Conjunction works by computing pairs 〈p1, p2〉 and 〈q1, q2〉. The former is the
usual conjunction on the first components of the Booleans b1, b2: u1〈u2,ff〉 can
be read as “if u1 then u2, otherwise false (ff).” The latter is (exploiting De
Morgan duality) the disjunction of the complement components of the Booleans:
v1〈tt, v2〉 is read as “if v1 (i.e. if not u1) then true (tt), otherwise v2 (i.e. not u2).”
The result of the computation is equal to 〈p1, q1〉, but this leaves p2, q2 unused,
which would violate linearity. However, there is symmetry to this garbage, which
allows for its disposal. Notice that, while we do not know whether p2 is tt or
ff and similarly for q2, we do know that one of them is tt while the other is ff.
Composing the two together, we are guaranteed that p2 ◦ q2 = ff. Composing
this again with another twist (ff) results in the identity function p2 ◦ q2 ◦ ff =
tt. Finally, composing this with q1 is just equal to q1, so 〈p1, q1 ◦ p2 ◦ q2 ◦
ff〉 = 〈p1, q1〉, which is the desired result, but the symmetric garbage has been
annihilated, maintaining linearity.
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Similarly, we define truth-table implication:

Implies ≡ λb1.λb2.
let 〈u1, v1〉 = b1 in
let 〈u2, v2〉 = b2 in
let 〈p1, p2〉 = u1〈u2,tt〉 in
let 〈q1, q2〉 = v1〈ff, v2〉 in
〈p1, q1 ◦ p2 ◦ q2 ◦ ff〉

Let us work through the construction once more: Notice that if b1 is True, then
u1 is tt, so p1 is tt iff b2 is True. And if b1 is True, then v1 is ff, so q1 is ff
iff b2 is False. On the other hand, if b1 is False, u1 is ff, so p1 is tt, and v1 is
tt, so q1 is ff. Therefore 〈p1, q1〉 is True iff b1 ⊃ b2, and False otherwise. Or,
if you prefer, u1〈u2,tt〉 can be read as “if u1, then u2 else tt”—the if-then-else
description of the implication u1 ⊃ u2 —and v1〈ff, v2〉 as its De Morgan dual
¬(v2 ⊃ v1). Thus 〈p1, q1〉 is the answer we want—and we need only dispense
with the “garbage” p2 and q2. De Morgan duality ensures that one is tt, and the
other is ff (though we do not know which), so they always compose to ff.

However, simply returning 〈p1, q1〉 violates linearity since p2, q2 go unused. We
know that p2 = tt iff q2 = ff and p2 = ff iff q2 = tt. We do not know which
is which, but clearly p2 ◦ q2 = ff ◦tt = tt ◦ff = ff. Composing p2 ◦ q2 with
ff, we are guaranteed to get tt. Therefore q1 ◦ p2 ◦ q2 ◦ ff = q1, and we have
used all bound variables exactly once.

This hacking, with its self-annihilating garbage, is an improvement over that given
by Mairson (2004) and allows Boolean computation without K-redexes, making
the lower bound stronger, but also preserving all flows. In addition, it is the best
way to do circuit computation in multiplicative linear logic, and is how you com-
pute similarly in non-affine typed λ-calculus (Mairson 2006b).

By writing continuation-passing style variants of the logic gates, we can encode
circuits that look like straight-line code. For example, define CPS logic gates as
follows:

Andgate ≡ λb1.λb2.λk.k(And b1 b2)

Orgate ≡ λb1.λb2.λk.k(Or b1 b2)

Impliesgate ≡ λb1.λb2.λk.k(Implies b1 b2)

Notgate ≡ λb.λk.k(Not b)

Copygate ≡ λb.λk.k(Copy b)
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Figure 3.6: An example circuit.

Continuation-passing style code such as Andgate b1 b2 (λr.e) can be read collo-
quially as a kind of low-level, straight-line assembly language: “compute the And
of registers b1 and b2, write the result into register r, and goto e.”

An example circuit is given in Figure 3.6, which can be encoded as:

Circuit ≡ λe1.λe2.λe3λe4.λe5.λe6.

Andgate e2 e3 (λe7.

Andgate e4 e5 (λe8.

Copygate f (λe9.λe10.

Orgate e1 e9 (λe11.

Orgate e10 e6 (λe12.

Orgate e11 e12 (λo.o))))))

Notice that each variable in this CPS encoding corresponds to a wire in the circuit.

The above code says:

• compute the And of e2 and e3, putting the result in register e7,

• compute the And of e4 and e5, putting the result in register e8,

• compute the And of e7 and e8, putting the result in register f ,
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• make two copies of register f , putting the values in registers e9 and e10,

• compute the Or of e1 and e9, putting the result in register e11,

• compute the Or of e10 and e6, putting the result in register e12,

• compute the Or of e11 and e12, putting the result in the o (“output”) register.

We know from corollary 1 that evaluation and analysis of linear programs are syn-
onymous, and our encoding of circuits will faithfully simulate a given circuit on
its inputs, evaluating to true iff the circuit accepts its inputs. But it does not imme-
diately follow that the circuit value problem can be reduced to the flow analysis
problem. Let ||C, ~x|| be the encoding of the circuit and its inputs. It is tempting
to think the instance of the flow analysis problem could be stated:

is True in Ĉ(`) in the analysis of ||C, ~x||`?

The problem with this is there may be many syntactic instances of “True.” Since
the flow analysis problem must ask about a particular one, this reduction will not
work. The fix is to use a context which expects a Boolean expression and induces
a particular flow (that can be asked about in the flow analysis problem) iff that
expression evaluates to a true value.

We use The Widget to this effect. It is a term expecting a Boolean value. It
evaluates as though it were the identity function on Booleans, Widget b = b, but
it induces a specific flow we can ask about. If a true value flows out of b, then
TrueW flows out of Widget b. If a false value flows out of b, then FalseW

flows out of Widget b, where TrueW and FalseW are distinguished terms, and
the only possible terms that can flow out. We usually drop the subscripts and say
“does True flow out of Widget b?” without much ado.

Widget ≡ λb.

let 〈u, v〉 = b in
let 〈x, y〉 = u〈f, g〉 in
let 〈x′, y′〉 = u′〈f ′, g′〉 in
〈〈xa, yn〉, 〈x′a′, y′b′〉〉

Because the circuit value problem is complete for PTIME, we conclude:
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Theorem 3. The control flow problem for 0CFA is complete for PTIME.

Corollary 3. The control flow problem for simple closure analysis is complete for
PTIME.

3.6 Other Monovariant Analyses

In this section, we survey some of the existing monovariant analyses that either
approximate or restrict 0CFA to obtain faster analysis times. In each case, we
sketch why these analyses are complete for PTIME.

Shivers (2004) noted in his retrospective on control flow analysis that “in the en-
suing years [since 1988], researchers have expended a great deal of effort deriving
clever ways to tame the cost of the analysis.” Such an effort prompts a fundamen-
tal question: to what extent is this possible?

Algorithms to compute 0CFA were long believed to be at least cubic in the size of
the program, proving impractical for the analysis of large programs, and Heintze
and McAllester (1997c) provided strong evidence to suggest that in general, this
could not be improved. They reduced the problem of computing 0CFA to that of
deciding two-way nondeterministic push-down automata acceptance (2NPDA);
a problem whose best known algorithm was cubic and had remained so since its
discovery (Aho et al. 1968)—or so it was believed; see section 6.4 for a discussion.

In the face of this likely insurmountable bottleneck, researchers derived ways
of further approximating 0CFA, thereby giving up information in the service of
quickly computing a necessarily less precise analysis in order to avoid the “cubic
bottleneck.”

Such further approximations enjoy linear or near linear algorithms and have be-
come widely used for the analysis of large programs where the more precise 0CFA
would be to expensive to compute. But it is natural to wonder if the algorithms for
these simpler analyses could be improved. Owing to 0CFA’s PTIME-lower bound,
its algorithms are unlikely to be effectively parallelized or made memory efficient.
But what about these other analyses?
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3.6.1 Ashley and Dybvig’s Sub-0CFA

Ashley and Dybvig (1998) developed a general framework for specifying and
computing flow analyses; instantiations of the framework include 0CFA and the
polynomial 1CFA of Jagannathan and Weeks (1995), for example. They also
developed a class of instantiations, dubbed sub-0CFA, that are faster to compute,
but less accurate than 0CFA.

This analysis works by explicitly bounding the number of times the cache can be
updated for any given program point. After this threshold has been crossed, the
cache is updated with a distinguished unknown value that represents all possible
λ-abstractions in the program. Bounding the number of updates to the cache for
any given location effectively bounds the number of passes over the program an
analyzer must make, producing an analysis that is O(n) in the size of the program.
Empirically, Ashley and Dybvig observe that setting the bound to 1 yields an
inexpensive analysis with no significant difference in enabling optimizations with
respect to 0CFA.

The idea is the cache gets updated once (n times in general) before giving up and
saying all λ-abstractions flow out of this point. But for a linear term, the cache is
only updated at most once for each program point. Thus we conclude even when
the sub-0CFA bound is 1, the problem is PTIME-complete.

As Ashley and Dybvig note, for any given program, there exists an analysis in the
sub-0CFA class that is identical to 0CFA (namely by setting n to the number of
passes 0CFA makes over the given program). We can further clarify this relation-
ship by noting that for all linear programs, all analyses in the sub-0CFA class are
identical to 0CFA (and thus simple closure analysis).

3.6.2 Subtransitive 0CFA

Heintze and McAllester (1997c) have shown the “cubic bottleneck” of computing
full 0CFA—that is, computing all the flows in a program—cannot be avoided in
general without combinatorial breakthroughs: the problem is 2NPDA-hard, for
which the “the cubic time decision procedure [. . . ] has not been improved since
its discovery in 1968.”

Forty years later, that decision procedure was improved to be slightly subcubic
by Chaudhuri (2008). However, given the strong evidence at the time that the
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situation was unlikely to improve in general, Heintze and McAllester (1997a)
identified several simpler flow questions4 and designed algorithms to answer them
for simply-typed programs. Under certain typing conditions, namely that the type
is within a bounded size, these algorithms compute in less than cubic time.

The algorithm constructs a graph structure and runs in time linear in a program’s
graph. The graph, in turn, is bounded by the size of the program’s type. Thus,
bounding the size of a program’s type results in a linear bound on the running
times of these algorithms.

If this type bound is removed, though, it is clear that even these simplified flow
problems (and their bidirectional-flow analogs), are complete for PTIME: observe
that every linear term is simply typable, however in our lower bound construction,
the type size is proportional to the size of the circuit being simulated. As they
point out, when type size is not bounded, the flow graph may be exponentially
larger than the program, in which case the standard cubic algorithm is preferred.

Independently, Mossin (1998) developed a type-based analysis that, under the
assumption of a constant bound on the size of a program’s type, can answer re-
stricted flow questions such as single source/use in linear time with respect to the
size of the explicitly typed program. But again, removing this imposed bound
results in PTIME-completeness.

As Hankin et al. (2002) point out: both Heintze and McAllester’s and Mossin’s
algorithms operate on type structure (or structure isomorphic to type structure),
but with either implicit or explicit η-expansion. For simply-typed terms, this can
result in an exponential blow-up in type size. It is not surprising then, that given a
much richer graph structure, the analysis can be computed quickly.

In this light, the results of chapter 4 on 0CFA of η-expanded, simply-typed pro-
grams can be seen as an improvement of the subtransitive flow analysis since it
works equally well for languages with first-class control and can be performed
with only a fixed number of pointers into the program structure, i.e. it is com-
putable in LOGSPACE (and in other words, PTIME = LOGSPACE up to η).

4Including the decision problem discussed in this dissertation, which is the simplest; answers to
any of the other questions imply an answer to this problem
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3.7 Conclusions

When an analysis is exact, it will be possible to establish a correspondence with
evaluation. The richer the language for which analysis is exact, the harder it will
be to compute the analysis. As an example in the extreme, Mossin (1997a) devel-
oped a flow analysis that is exact for simply-typed terms. The computational re-
sources that may be expended to compute this analysis are ipso facto not bounded
by any elementary recursive function (Statman 1979). However, most flow analy-
ses do not approach this kind of expressivity. By way of comparison, 0CFA only
captures PTIME, and yet researchers have still expending a great deal of effort de-
riving approximations to 0CFA that are faster to compute. But as we have shown
for a number of them, they all coincide on linear terms, and so they too capture
PTIME.

We should be clear about what is being said, and not said. There is a considerable
difference in practice between linear algorithms (nominally considered efficient)
and cubic—or near cubic—algorithms (still feasible, but taxing for large inputs),
even though both are polynomial-time. PTIME-completeness does not distinguish
the two. But if a sub-polynomial (e.g., LOGSPACE) algorithm was found for this
sort of flow analysis, it would depend on (or lead to) things we do not know
(LOGSPACE = PTIME).

Likewise, were a parallel implementation of this flow analysis to run in logarith-
mic time (i.e., NC), we would consequently be able to parallelize every polynomial
time algorithm. PTIME-complete problems are considered to be the least likely to
be in NC. This is because logarithmic-space reductions (such as our compiler
from circuits to λ-terms) preserve parallel complexity, and so by composing this
reduction with a (hypothetical) logarithmic-time 0CFA analyzer (or equivalently,
a logarithmic-time linear λ-calculus evaluator) would yield a fast parallel algo-
rithm for all problems in PTIME, which are by definition, logspace-reducible to
the circuit value problem (Papadimitriou 1994, page 377).

The practical consequences of the PTIME-hardness result is that we can conclude
any analysis which is exact for linear programs, which includes 0CFA, and many
further approximations, does not have a fast parallel algorithm unless PTIME =
NC.
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Chapter 4

Linear Logic and Static Analysis

If you want to understand exactly how and where static analysis is computation-
ally difficult, you need to know about linearity. In this chapter, we develop an
alternative, graphical representation of programs that makes explicit both non-
linearity and control, and is suitable for static analysis.

This alternative representation offers the following benefits:

• It provides clear intuitions on the essence of 0CFA and forms the basis for a
transparent proof of the correspondence between 0CFA and evaluation for
linear programs.

• As a consequence of symmetries in the notation, it is equally well-suited for
representing programs with first-class control.

• It based on the technology of linear logic. Insights gleaned from linear logic,
viewed through the lens of a Curry-Howard correspondence, can inform
program analysis and vice versa.

• As an application of the above, a novel and efficient algorithm for analyzing
typed programs (section 4.4) is derived from recent results on the efficient
normalization of linear logic proofs.

We give a reformulation of 0CFA in this setting and then transparently reprove
the main result of section 3.4: analysis and evaluation are synonymous for linear
programs.
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4.1 Sharing Graphs for Static Analysis

In general, the sharing graph of a term will consist of a distinguished root wire
from which the rest of the term’s graph “hangs.”

M

fv(M)

At the bottom of the graph, the dangling wires represent free variables and connect
to occurrences of the free variable within in term.

Graphs consist of ternary abstraction (λ), apply (@), sharing (O) nodes, and unary
weakening (�) nodes. Each node has a distinguished principal port. For unary
nodes, this is the only port. The ternary nodes have two auxiliary ports, distin-
guished as the white and black ports.

• A variable occurrence is represented simply as a wire from the root to the
free occurrence of the variable.

x

x

• Given the graph for M , where x occurs free,

M

fv(M) \ {x} x
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the abstraction λx.M is formed as,

λx.M, x ∈ fv(M)M

fv(M) \ {x}

λ

Supposing x does not occur in M , the weakening node (�) is used to “plug”
the λ variable wire.

λx.M, x /∈ fv(M)M

fv(M)

λ

�

• Given graphs for M and N ,

M N

fv(M) fv(N),
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@ @ @@

λx

⇒cfa

λx λx

⇒cfa

λx

Figure 4.1: CFA virtual wire propagation rules.

the application MN is formed as,

M N

@

MN

fv(N) \ fv(M)

fv(N) ∩ fv(M)

fv(M) \ fv(N)

.

An application node is introduced. The operator M is connected to the
function port and the operand N is connected to the argument port. The
continuation wire becomes the root wire for the application. Free variables
shared between both M and N are fanned out with sharing nodes.

4.2 Graphical 0CFA

We now describe an algorithm for performing control flow analysis that is based
on the graph coding of terms. The graphical formulation consists of generating a
set of virtual paths for a program graph. Virtual paths describe an approximation
of the real paths that will arise during program execution.

Figure 4.1 defines the virtual path propagation rules. Note that a wire can be
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identified by its label or a variable name.1 The left hand rule states that a virtual
wire is added from the continuation wire to the body wire and from the variable
wire to the argument wire of each β-redex. The right hand rule states analogous
wires are added to each virtual β-redex—an apply and lambda node connected by
a virtual path. There is a virtual path between two wires ` and `′, written `  `′

in a CFA-graph iff:

1. ` ≡ `′.

2. There is a virtual wire from ` to `′.

3. ` connects to an auxiliary port and `′ connects to the root port of a sharing
node.

4. There is a virtual path from ` to `′′ and from `′′ and `′.

Reachability: Some care must be taken to ensure leastness when propagating
virtual wires. In particular, wires are added only when there is a virtual path
between a reachable apply and a lambda node. An apply node is reachable if it is
on the spine of the program, i.e., if e = (· · · ((e0e1)

`1e2)
`2 · · · en)`n then the apply

nodes with continuation wires labeled `1, . . . , `n are reachable, or it is on the spine
of an expression with a virtual path from a reachable apply node.

Reachability is usually explained as a known improvement to flow analysis; pre-
cision is increased by avoiding parts of the program that cannot be reached (Ayers
1993; Palsberg and Schwartzbach 1995; Biswas 1997; Heintze and McAllester
1997b; Midtgaard and Jensen 2008, 2009).

But reachability can also be understood as an analysis analog to weak normaliza-
tion. Reachability says roughly: “don’t analyze under λ until the analysis deter-
mines it may be applied.” On the other hand, weak normalization says: “don’t
evaluate under λ until the evaluator determines it is applied.” The analyzers of
chapter 2 implicitly include reachability since they are based on a evaluation func-
tion that performs weak normalization.

The graph-based analysis can now be performed in the following way: con-
struct the CFA graph according to the rules in Figure 4.1, then define Ĉ(`) as
{(λx.e)`′ | `  `′} and r̂(x) as {(λx.e)` | x  `}. It is easy to see that the

1We implicitly let ` range over both in the following definitions.
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8
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Figure 4.2: Graph coding and CFA graph of (λf.ff(λy.y))(λx.x).

algorithm constructs answers that satisfy the acceptability relation specifying the
analysis. Moreover, this algorithm constructs least solutions according to the par-
tial order given in section 2.3.

Lemma 5. Ĉ′, r̂′ |= e implies Ĉ, r̂ v Ĉ′, r̂′ for Ĉ, r̂ constructed for e as described
above.

We now consider an example of use of the algorithm. Consider the labeled pro-
gram:

((λf.((f 1f 2)3(λy.y4)5)6)7(λx.x8)9)10

Figure 4.2 shows the graph coding of the program and the corresponding CFA
graph. The CFA graph is constructed by adding virtual wires 10 6 and f  9,
induced by the actual β-redex on wire 7. Adding the virtual path f  9 to the
graph creates a virtual β-redex via the route 1  f (through the sharing node),
and f  9 (through the virtual wire). This induces 3  8 and 8  2. There is
now a virtual β-redex via 3  8  2  f  9, so wires 6  8 and 8  5 are
added. This addition creates another virtual redex via 3  8  2  5, which
induces virtual wires 6  4 and 4  5. No further wires can be added, so the
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CFA graph is complete. The resulting abstract cache gives:

Ĉ(1) = {λx} Ĉ(6) = {λx, λy}
Ĉ(2) = {λx} Ĉ(7) = {λf}
Ĉ(3) = {λx, λy} Ĉ(8) = {λx, λy}
Ĉ(4) = {λy} Ĉ(9) = {λx}
Ĉ(5) = {λy} Ĉ(10) = {λx, λy}

r̂(f) = {λx}
r̂(x) = {λx, λy}
r̂(y) = {λy}

4.3 Multiplicative Linear Logic

The Curry-Howard isomorphism states a correspondence between logical systems
and computational calculi (Howard 1980). The fundamental idea is that data types
are theorems and typed programs are proofs of theorems.

It begins with the observation that an implication A→ B corresponds
to a type of functions from A to B, because inferring B from A →
B and A can be seen as applying the first assumption to the second
one—just like a function from A to B applied to an element of A
yields an element of B. (Sørensen and Urzyczyn 2006, p. v)

For the functional programmer, the most immediate correspondence is between
proofs in propositional intuitionistic logic and simply typed λ-terms. But the cor-
respondence extends considerably further.

Virtually all proof-related concepts can be interpreted in terms of
computations, and virtually all syntactic features of various lambda-
calculi and similar systems can be formulated in the language of proof
theory.

In this section we want to develop the “proofs-as-programs” correspondence for
linear programs, an important class of programs to consider for lower bounds on
program analysis. Because analysis and evaluation are synonymous for linear
programs, insights from proof evaluation can guide new algorithms for program
analysis.
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The correspondence between simply typed (nonlinear) terms and intuitionistic
logic can be seen by looking at the familiar typing rules:

VAR
Γ, x : A ` x : A

ABS
Γ, x : A `M : B

Γ ` λx.M : A→ B

APP
Γ `M : A→ B Γ ` N : A

Γ `MN : B

If you ignore the “proof terms” (i.e. the programs), you get intuitionsitic sequent
calculus:

AX
Γ, A ` A

→I
Γ, A ` B

Γ ` A→ B
→E

Γ ` A→ B Γ ` A

Γ ` B

Likewise, linear programs have their own logical avatar, namely multiplicative
linear logic.

4.3.1 Proofs

Each atomic formula is given in two forms: positive (A) and negative (A⊥) and
the linear negation of A is A⊥ and vice versa. Negation is extended to compound
formulae via De Morgan laws:

(A⊗B)⊥ = A⊥OB⊥ (AOB)⊥ = A⊥ ⊗B⊥

A two sided sequent

A1, . . . , An ` B1, . . . , Bm

is replaced by

` A⊥
1 , . . . , A⊥

n , B1, . . . , Bm

The interested reader is referred to Girard (1987) for more details on linear logic.

For each derivation in MLL, there is a proofnet, which abstracts away much of the
needless sequentialization of sequent derivations, “like the order of application
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of independent logical rules: for example, there are many inessintailly different
ways to obtain ` A1OA2, . . . An−1OAn from ` A1, . . . An, while there is only
one proof net representing all these derivations” (Di Cosmo et al. 2003). There is
strong connection with calculus of explicit substitutions Di Cosmo et al. (2003).

The sequent rules of multiplicative linear logic (MLL) are given in Figure 4.3.

AX
A, A⊥ CUT

Γ, A A⊥, ∆

Γ, ∆
O

Γ, A,B

Γ, AOB
⊗

Γ, A ∆, B

Γ, ∆, A⊗B

Figure 4.3: MLL sequent rules.

4.3.2 Programs

These rules have an easy functional programming interpretation as the types of
a linear programming language (eg. linear ML), following the intuitions of the
Curry-Howard correspondence (Girard et al. 1989; Sørensen and Urzyczyn 2006).2

(These are written in the more conventional (to functional programmers) two-
sided sequents, but just remember that A⊥ on the left is like A on the right).

x : A ` x : A

Γ `M : A ∆ ` N : B

Γ, ∆ ` (M, N) : A⊗B

Γ, x : A `M : B

Γ ` λx.M : A( B

Γ `M : A( B ∆ ` N : A

Γ, ∆ `MN : B

Γ `M : A⊗B ∆, x : A, y : B ` N : C

Γ, ∆ ` let 〈x, y〉 = M in N : C

The AXIOM rule says that a variable can be viewed simultaneously as a continua-
tion (A⊥) or as an expression (A)—one man’s ceiling is another man’s floor. Thus
we say “input of type A” and “output of type A⊥” interchangeably, along with
similar dualisms. We also regard (A⊥)⊥ synonymous with A: for example, Int

2For a more detailed discussion of the C.-H. correspondence between linear ML and MLL, see
Mairson (2004).
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is an integer, and Int⊥ is a request (need) for an integer, and if you need to need
an integer—(Int⊥)⊥—then you have an integer.

The CUT rule says that if you have two computations, one with an output of type
A, another with an input of type A, you can plug them together.

The ⊗-rule is about pairing: it says that if you have separate computations pro-
ducing outputs of types A and B respectively, you can combine the computations
to produce a paired output of type A⊗ B. Alternatively, given two computations
with A an output in one, and B an input (equivalently, continuation B⊥ an output)
in the other, they get paired as a call site “waiting” for a function which produces
an output of type B with an input of type A. Thus ⊗ is both cons and function
call (@).

The O-rule is the linear unpairing of this ⊗-formation. When a computation uses
inputs of types A and B, these can be combined as a single input pair, e.g., let
(x,y)=p in.... Alternatively, when a computation has an input of type A
(output of continuation of type A⊥) and an output of type B, these can be com-
bined to construct a function which inputs a call site pair, and unpairs them appro-
priately. Thus O is both unpairing and λ.

4.4 η-Expansion and LOGSPACE

4.4.1 Atomic versus Non-Atomic Axioms

The above AXIOM rule does not make clear whether the formula A is an atomic
type variable or a more complex type formula. When a linear program only
has atomic formulas in the “axiom” position, then we can evaluate (normalize)
it in logarithmic space. When the program is not linear, we can similarly com-
pute a 0CFA analysis in LOGSPACE. Moreover, these problems are complete for
LOGSPACE.

MLL proofs with non-atomic axioms can be easily converted to ones with atomic
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@

@

@
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@
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@

@

@
σ

λx

λy

λx

σ σ′⇒σ′ → σ

λx

λy

λx

σ′⇒ σσ′ → σ

λx.ee′ ⇒ ⇒

σ′ → σ

⇒ ⇒
λxλx λz

λyλx

λz

σ′ → σ

e0(e1e2) ⇒ e0(λy.e1e2y) λx.C[λz.x] ⇒ λx.λy.C[λz.zy]

⇒ λx.λy.xy

λx.C[e(λy.xy)]λx.C[ex]λx.λy.ee′y

λx.x

σ′ σ′σ

Figure 4.4: Expansion algorithm.

axioms using the following transformation, analogous to η-expansion:

α⊗ β, α⊥Oβ⊥
⇒

α, α⊥ β, β⊥

α⊗ β, α⊥, β⊥

α⊗ β, α⊥Oβ⊥

This transformation can increase the size of the proof. For example, in the circuit
examples of the previous section (which are evidence for PTIME-completeness),
η-expansion causes an exponential increase in the number of proof rules used.3 A
LOGSPACE evaluation is then polynomial-time and -space in the original circuit
description.
3It is linear in the formulas used, whose length increases exponentially (not so if the formulas are
represented by directed acyclic graphs).
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The program transformation corresponding to the above proof expansion is a ver-
sion of η-expansion: see Figure 4.4. The left hand expansion rule is simply η,
dualized in the unusual right hand rule. The right rule is written with the @ above
the λ only to emphasis its duality with the left rule. Although not shown in the
graphs, but implied by the term rewriting rules, an axiom may pass through any
number of sharing nodes.

4.4.2 Proof Normalization with Non-Atomic Axioms: PTIME

A normalized linear program has no redexes. From the type of the program, one
can reconstruct—in a totally syntax-directed way—what the structure of the term
is (Mairson 2004). It is only the position of the axioms that is not revealed. For
example, both TT and FF from the above circuit example have type ’a * ’a
-> ’a * ’a.4 From this type, we can see that the term is a λ-abstraction, the
parameter is unpaired—and then, are the two components of type a repaired as
before, or “twisted”? To twist or not to twist is what distinguishes TT from FF.

An MLL proofnet is a graphical analogue of an MLL proof, where various se-
quentialization in the proof is ignored. The proofnet consists of axiom, cut, ⊗,
and O nodes with various dangling edges corresponding to conclusions. Rules for
proofnet formation (Figure 4.5) follow the rules for sequent formation (Figure 4.3)
almost identically.

⇒
axax

cut

Π

Γ A B

⇒
Π

Γ
O
AOB

A A⊥

Π′Π Π Π′

∆ ∆Γ ΓA A⊥

⇒

Π Π′

Γ A B ∆

⇒
Π Π′

⊗
∆Γ A⊗ B

Π

Γ A B

⇒
Π

Γ
O
AOB

A A⊥

Π′Π Π Π′

∆ ∆Γ A A⊥

Π Π′

Γ A B ∆

⇒
Π Π′

⊗
∆Γ A⊗ B

Γ

Figure 4.5: MLL proofnets.

4The linear logic equivalent is (α⊥Oα⊥)O(α ⊗ α). The λ is represented by the outer O, the
unpairing by the inner O, and the consing by the ⊗.
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A binary axiom node has two dangling edges, typed A and A⊥. Given two dis-
joint proofnets with dangling edges (conclusions) typed Γ, A and A⊥, ∆, the edges
typed A, A⊥ can be connected to a binary cut node, and the resulting connected
proofnet has dangling edges typed Γ, ∆. Given a connected proofnet with dan-
gling wires typed Γ, A,B, the edges typed A, B can be connected to the two aux-
iliary port of a O node and the dangling edge connected to the principal port will
have type AOB. Finally, given two disjoint proofnets with dangling edges typed
Γ, A and ∆, B, the edges typed A, B can be connected to the two auxiliary ports
of a ternary ⊗ node; the principal port then has a dangling wire of type A ⊗ B.
The intuition is that ⊗ is pairing and O is linear unpairing.

The geometry of interaction (Girard 1989; Gonthier et al. 1992)—the semantics of
linear logic—and the notion of paths provide a way to calculate normal forms, and
may be viewed as the logician’s way of talking about static program analysis.5 To
understand how this analysis works, we need to have a graphical picture of what
a linear functional program looks like.

Without loss of generality, such a program has a type φ. Nodes in its graphical
picture are either λ or linear unpairing (O in MLL), or application/call site or
linear pairing (⊗ in MLL). We draw the graphical picture so that axioms are on
top, and cuts (redexes, either β-redexes or pair-unpair redexes) are on the bottom
as shown in Figure 4.6.

α⊥

· · ·

cut cut

ax ax

ψ ψ⊥ ρ ρ⊥φ

α α⊥αα⊥α

Figure 4.6: MLL proofnet with atomic axioms.

Because the axioms all have atomic type, the graph has the following nice prop-
erty:

Lemma 6. Begin at an axiom α and “descend” to a cut-link, saving in an (initially
empty) stack whether nodes are encountered on their left or right auxiliary port.

5See Mairson (2002) for an introduction to context semantics and normalization by static analysis
in the geometry of interaction.
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Once a cut is reached, “ascend” the accompanying structure, popping the stack
and continuing left or right as specified by the stack token. Then (1) the stack
empties exactly when the next axiom α′ is reached, and (2) if the k-th node from
the start traversed is a ⊗, the k-th node from the end traversed is a O, and vice
versa.

The path traced in the Lemma, using the stack, is geometry of interaction (GoI),
also known as static analysis. The correspondence between the k-th node from the
start and end of the traversal is precisely that between a call site (⊗) and a called
function (O), or between a cons (⊗) and a linear unpairing (O).

4.4.3 Proof Normalization with Atomic Axioms: LOGSPACE

A sketch of the “four finger” normalization algorithm: The stack height may be
polynomial, but we do not need the stack! Put fingers α, β on the axiom where the
path begins, and iterate over all possible choices of another two fingers α′, β′ at
another axiom. Now move β and β′ towards the cut link, where if β encounters a
node on the left (right), then β′ must move left (right) also. If α′, β′ were correctly
placed initially, then when β arrives at the cut link, it must be met by β′. If β′ isn’t
there, or got stuck somehow, then α′, β′ were incorrectly placed, and we iterate to
another placement and try again.

Lemma 7. Any path from axiom α to axiom α′ traced by the stack algorithm of the
previous lemma is also traversed by the “four finger” normalization algorithm.

Normalization by static analysis is synonymous with traversing these paths. Be-
cause these fingers can be stored in logarithmic space, we conclude (Terui 2002;
Mairson 2006a,b):

Theorem 4. Normalization of linear, simply-typed, and fully η-expanded func-
tional programs is contained in LOGSPACE.

That 0CFA is then contained in LOGSPACE is a casual byproduct of this theorem,
due to the following observation: if application site χ calls function φ, then the
⊗ and O (synonymously, @ and λ) denoting call site and function are in distinct
trees connected by a CUT link. As a consequence the 0CFA computation is a
subcase of the four-finger algorithm: traverse the two paths from the nodes to
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the cut link, checking that the paths are isomorphic, as described above. The full
0CFA calculation then iterates over all such pairs of nodes.

Corollary 4. 0CFA of linear, simply-typed, and fully η-expanded functional pro-
grams is contained in LOGSPACE.

4.4.4 0CFA in LOGSPACE

Now let us remove the linearity constraint, while continuing to insist on full η-
expansion as described above, and simple typing. The normalization problem is
no longer contained in LOGSPACE, but rather non-elementary recursive, (Statman
1979; Mairson 1992b; Asperti and Mairson 1998). However, 0CFA remains con-
tained in LOGSPACE, because it is now an approximation. This result follows from
the following observation:

Lemma 8. Suppose (t` e) occurs in a simply typed, fully η-expanded program and
λx.e ∈ Ĉ(`). Then the corresponding ⊗ and O occur in adjacent trees connected
at their roots by a CUT-link and on dual, isomorphic paths modulo placement of
sharing nodes.

Here “modulo placement” means: follow the paths to the cut—then we encounter
⊗ (resp., O) on one path when we encounter O (resp.,⊗) on the other, on the same
(left, right) auxiliary ports. We thus ignore traversal of sharing nodes on each path
in judging whether the paths are isomorphic. (Without sharing nodes, the ⊗ and
O would annihilate—i.e., a β-redex—during normalization.)

Theorem 5. 0CFA of a simply-typed, fully η-expanded program is contained in
LOGSPACE.

Observe that 0CFA defines an approximate form of normalization which is sug-
gested by simply ignoring where sharing occurs. Thus we may define the set of
λ-terms to which that a term might evaluate. Call this 0CFA-normalization.

Theorem 6. For fully η-expanded, simply-typed terms, 0CFA-normalization can
be computed in nondeterministic LOGSPACE.

Conjecture 1. For fully η-expanded, simply-typed terms, 0CFA-normalization is
complete for nondeterministic LOGSPACE.
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The proof of the above conjecture likely depends on a coding of arbitrary directed
graphs and the consideration of commensurate path problems.

Conjecture 2. An algorithm for 0CFA normalization can be realized by optimal
reduction, where sharing nodes always duplicate, and never annihilate.

4.4.5 LOGSPACE-hardness of Normalization and 0CFA: linear,
simply-typed, fully η-expanded programs

That the normalization and 0CFA problem for this class of programs is as hard as
any LOGSPACE problem follows from the LOGSPACE-hardness of the permutation
problem: given a permutation π on 1, . . . , n and integer 1 ≤ i ≤ n, are 1 and i on
the same cycle in π? That is, is there a k where 1 ≤ k ≤ n and πk(1) = i?

Briefly, the LOGSPACE-hardness of the permutation problem is as follows.6 Given
an arbitrary LOGSPACE Turing machine M and an input x to it, visualize a graph
where the nodes are machine IDs, with directed edges connecting successive con-
figurations. Assume that M always accepts or rejects in unique configurations.
Then the graph has two connected components: the “accept” component, and the
“reject” component. Each component is a directed tree with edges pointing to-
wards the root (final configuration). Take an Euler tour around each component
(like tracing the fingers on your hand) to derive two cycles, and thus a permuta-
tion on machine IDs. Each cycle is polynomial size, because the configurations
only take logarithmic space. The equivalent permutation problem is then: does
the initial configuration and the accept configuration sit on the same cycle?

The following linear ML code describes the “target” code of a transformation of
an instance of the permutation problem. For a permutation on n letters, we take
here an example where n = 3. Begin with a vector of length n set to False, and
a permutation on n letters:

- val V= (False,False,False);
val V = ((fn,fn),(fn,fn),(fn,fn))
: ((’a * ’a -> ’a * ’a) * (’a * ’a -> ’a * ’a))

* ((’a * ’a -> ’a * ’a) * (’a * ’a -> ’a * ’a))

* ((’a * ’a -> ’a * ’a) * (’a * ’a -> ’a * ’a))

6This presentation closely follows Mairson (2006b).
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Denote as ν the type of vector V.

- fun Perm (P,Q,R)= (Q,R,P);
val Perm = fn : ν -> ν

The function Insert linearly inserts True in the first vector component, using
all input exactly once:

- fun Insert ((p,p’),Q,R)= ((TT,Compose(p,p’)),Q,R);
val Insert = fn : ν -> ν

The function Select linearly selects the third vector component:

- fun Select (P,Q,(r,r’))=
(Compose (r,Compose (Compose P, Compose Q)),r’);

val Select = fn
: ν -> ((’a * ’a -> ’a * ’a) * (’a * ’a -> ’a * ’a))

Because Perm and Insert have the same flat type, they can be composed iter-
atively in ML without changing the type. (This clearly is not true in our coding
of circuits, where the size of the type increases with the circuit. A careful coding
limits the type size to be polynomial in the circuit size, regardless of circuit depth.)

Lemma 9. Let π be coded as permutation Perm. Define Foo to be

Compose(Insert,Perm)

composed with itself n times. Then 1 and i are on the same cycle of π iff Select
(Foo V) normalizes to True.

Because 0CFA of a linear program is identical with normalization, we conclude:

Theorem 7. 0CFA of a simply-typed, fully η-expanded program is complete for
LOGSPACE.

The usefulness of η-expansion has been noted in the context of partial evaluation
(Jones et al. 1993; Danvy et al. 1996). In that setting, η-redexes serve to syntacti-
cally embed binding-time coercions. In our case, the type-based η-expansion does
the trick of placing the analysis in LOGSPACE by embedding the type structure into
the syntax of the program.7

7Or, in slogan form: LOGSPACE = PTIME upto η.
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4.5 Graphical Flow Analysis and Control

Shivers (2004) argues that “CPS provide[s] a uniform representation of control
structure,” allowing “this machinery to be employed to reason about context, as
well,” and that “without CPS, separate contextual analyses and transforms must
be also implemented—redundantly,” in his view. Although our formulation of
flow analysis is a “direct-style” formulation, a graph representation enjoys the
same benefits of a CPS representation, namely that control structures are made
explicit—in a graph a continuation is simply a wire. Control constructs such as
call/cc can be expressed directly (Lawall and Mairson 2000) and our graphical
formulation of control flow analysis carries over without modification.

Lawall and Mairson (2000) derive graph representations of programs with con-
trol operators such as call/cc by first translating programs into continuation
passing style (CPS). They observed that when edges in the CPS graphs carry-
ing answer values (of type ⊥) are eliminated, the original (direct-style) graph is
regained, modulo placement of boxes and croissants that control sharing. Com-
posing the two transformations results in a direct-style graph coding for languages
with call/cc (hereafter, λK). The approach applies equally well to languages
such as Filinski’s symmetric λ-calculus (1989), Parigot’s λµ calculus (1992), and
most any language expressible in CPS.

Languages such as λξ, which contains the “delimited control” operators shift and
reset (Danvy and Filinski 1990), are not immediately amenable to this approach
since the direct-style transformation requires all calls to functions or continuations
be in tail position. Adapting this approach to such languages constitutes an open
area of research.

The left side of Figure 4.7 shows the graph coding of call/cc. Examining this
graph, we can read of an interpretation of call/cc, namely: call/cc is a
function that when applied, copies the current continuation (4) and applies the
given function f to a function (λv . . .) that when applied abandons the contin-
uation at that point (�) and gives its argument v to a copy of the continuation
where call/cc was applied. If f never applies the function it is given, then
control returns “normally” and the value f returns is given to the other copy of the
continuation where call/cc was applied.

The right side of Figure 4.7 gives the CFA graph for the program:

(call/cc (λk.(λx.1)(k2)))`
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Figure 4.7: Graph coding of call/cc and example CFA graph.

From the CFA graph we see that Ĉ(`) = {1, 2}, reflecting the fact that the program
will return 1 under a call-by-name reduction strategy and 2 under call-by-value.
Thus, the analysis is indifferent to the reduction strategy. Note that whereas be-
fore, approximation was introduced through nonlinearity of bound variables, ap-
proximation can now be introduced via nonlinear use of continuations, as seen
in the example. In the same way that 0CFA considers all occurrences of a bound
variable “the same”, 0CFA considers all continuations obtained with each instance
of call/cc “the same”.

Note that we can ask new kinds of interesting questions in this analysis. For exam-
ple, in Figure 4.7, we can compute which continuations are potentially discarded,
by computing which continuations flow into the weakening node of the call/cc
term. (The answer is the continuation ((λx.1)[ ]).) Likewise, it is possible to ask
which continuations are potentially copied, by computing which continuations
flow into the principal port of the sharing node in the call/cc term (in this case,
the top-level empty continuation [ ]). Because continuations are used linearly in
call/cc-free programs, the questions were uninteresting before—the answer is
always none.

Our proofs for the PTIME-completeness of 0CFA for the untyped λ-calculus carry
over without modification languages such as λK, λµ and the symmetric λ-calculus.
In other words, first-class control operators such as call/cc increase the expres-
sivity of the language, but add nothing to the computational complexity of control
flow analysis. In the case of simply-typed, fully η-expanded programs, the same
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can be said. A suitable notion of “simply-typed” programs is needed, such as that
provided by Griffin (1990) for λK. The type-based expansion algorithm of Fig-
ure 4.4 applies without modification and lemma 8 holds, allowing 0CFA for this
class of programs to be done in LOGSPACE. Linear logic provides a foundation
for (classical) λ-calculi with control; related logical insights allow control flow
analysis in this setting.

The graph coding of terms in our development is based on the technology of shar-
ing graphs in the untyped case, and proof nets in the typed case (Lafont 1995).
The technology of proofnets have previously been extended to intersection types
(Regnier 1992; Møller Neergaard 2004), which have a close connection to flow
analysis (Amtoft and Turbak 2000; Palsberg and Pavlopoulou 2001; Wells et al.
2002; Banerjee and Jensen 2003).

The graph codings, CFA graphs, and virtual wire propagation rules share a strong
resemblance to the “pre-flow” graphs, flow graphs, and graph “closing rules”,
respectively, of Mossin (1997b). Casting the analysis in this light leads to insights
from linear logic and optimal reduction. For example, as Mossin (1997b, page 78)
notes, the CFA virtual paths computed by 0CFA are an approximation of the actual
run-time paths and correspond exactly to the “well-balanced paths” of Asperti and
Laneve (1995) as an approximation to “legal paths” (Lévy 1978) and results on
proof normalization in linear logic (Mairson and Terui 2003) informed the novel
flow analysis algorithms presented here.
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kCFA and EXPTIME

In this chapter, we give an exact characterization of the computational complexity
of the kCFA hierarchy. For any k > 0, we prove that the control flow decision
problem is complete for deterministic exponential time. This theorem validates
empirical observations that such control flow analysis is intractable. It also pro-
vides more general insight into the complexity of abstract interpretation.

5.1 Shivers’ kCFA

As noted in section 1.1, practical flow analyses must negotiate a compromise be-
tween complexity and precision, and their expressiveness can be characterized by
the computational resources required to compute their results.

Examples of simple yet useful flow analyses include Shivers’ 0CFA (1988) and
Henglein’s simple closure analysis (1992), which are monovariant—functions
that are closed over the same λ-expression are identified. Their expressiveness
is characterized by the class PTIME (chapter 3).

As described in chapter 3, a monovariant analysis is one that approximates at
points of nonlinearity. When a variable appears multiple times, flow information
is merged together for all sites.

So for example, in analyzing the program from section 3.2,

(λf.(ff)(λy.y))(λx.x),
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a monovariant analysis such as 0CFA or simple closure analysis will merge the
flow information for the two occurrences of f . Consequently both λx.x and λy.y
are deemed to flow out of the whole expression.

More precise analyses can be obtained by incorporating context-sensitivity to dis-
tinguish multiple closures over the same λ-term, resulting in “finer grained ap-
proximations, expending more work to gain more information” (Shivers 1988,
1991). This context-sensitivity will allow the two occurrences of f to be analyzed
independently. Consequently, such an analysis will determine that only λy.y flows
out of the expression.

To put it another way, a context-sensitive analysis is capable of evaluating this
program.

As a first approximation to understanding, the added precision of kCFA can be
thought of as the ability to do partial reductions before analysis. If were to first re-
duce all of the apparent redexes in the program, and then do 0CFA on the residual,
our example program would look like

(λx1.x1)(λx2.x2)(λy.y).

Being a linear program, 0CFA is sufficient to prove only λy.y flows out of this
residual. The polyvariance of kCFA is powerful enough to prove the same, how-
ever it is important to note that it is not done by a bounded reduction of the pro-
gram. Instead, the kCFA hierarchy uses the last k calling contexts to distinguish
closures.

The increased precision comes with an empirically observed increase in cost. As
Shivers noted in his retrospective on the kCFA work (2004):

It did not take long to discover that the basic analysis, for any k > 0,
was intractably slow for large programs. In the ensuing years, re-
searchers have expended a great deal of effort deriving clever ways to
tame the cost of the analysis.

A fairly straightforward calculation—see, for example, Nielson et al. (1999)—
shows that 0CFA can be computed in polynomial time, and for any k > 0, kCFA
can be computed in exponential time.

These naive upper bounds suggest that the kCFA hierarchy is essentially flat; re-
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searchers subsequently “expended a great deal of effort” trying to improve them.1

For example, it seemed plausible (at least, to us) that the kCFA problem could be
in NPTIME by guessing flows appropriately during analysis.

As this dissertation shows, the naive algorithm is essentially the best one, and the
lower bounds are what needed improving. We prove that for all k > 0, computing
the kCFA analysis requires (and is thus complete for) deterministic exponential
time. There is, in the worst case—and plausibly, in practice—no way to tame the
cost of the analysis. Exponential time is required.

Why should this result matter to functional programmers?

• This result concerns a fundamental and ubiquitous static analysis of func-
tional programs.

The theorem gives an analytic, scientific characterization of the expressive
power of kCFA. As a consequence, the empirically observed intractability
of the cost of this analysis can be understood as being inherent in the ap-
proximation problem being solved, rather than reflecting unfortunate gaps
in our programming abilities.

Good science depends on having relevant theoretical understandings of what
we observe empirically in practice.

This connection between theory and experience contrasts with the similar
result for ML-type inference (Mairson 1990): while the problem of rec-
ognizing ML-typable terms is complete for exponential time, programmers
have happily gone on programming. It is likely that their need of higher-
order procedures, essential for the lower bound, is not considerable.2

But static flow analysis really has been costly, and this theorem explains
why.

• The theorem is proved by functional programming.

We take the view that the analysis itself is a functional programming lan-
guage, albeit with implicit bounds on the available computational resources.

1Even so, there is a big difference between algorithms that run in 2n and 2n2
steps, though both

are nominally in EXPTIME.
2Kuan and MacQueen (2007) have recently provided a refined perspective on the complexity of
ML-type inference that explains why it works so quickly in practice.

73



CHAPTER 5. KCFA AND EXPTIME

Our result harnesses the approximation inherent in kCFA as a computational
tool to hack exponential time Turing machines within this unconventional
language. The hack used here is completely unlike the one used for the ML
analysis, which depended on complete developments of let-redexes. The
theorem we prove in this paper uses approximation in a way that has little
to do with normalization.

We proceed by first bounding the complexity of kCFA from above, showing that
kCFA can be solved in exponential time (section 5.2). This is easy to calculate
and is known (Nielson et al. 1999). Next, we bound the complexity from be-
low by using kCFA as a SAT-solver. This shows kCFA is at least NPTIME-hard
(section 5.3). The intuitions developed in the NPTIME-hardness proof can be im-
proved to construct a kind of exponential iterator. A small, elucidative example is
developed in section 5.4. These ideas are then scaled up and applied in section 5.5
to close the gap between the EXPTIME upper bound and NPTIME lower bound by
giving a construction to simulate Turing machines for an exponential number of
steps using kCFA, thus showing kCFA to be complete for EXPTIME.

5.2 kCFA is in EXPTIME

Recall the definition of kCFA from section 2.3. The cache, Ĉ, r̂, is a finite mapping
and has nk+1 entries. Each entry contains a set of closures. The environment
component of each closure maps p free variables to any one of nk contours. There
are n possible λ-terms and nkp environments, so each entry contains at most n1+kp

closures. Analysis is monotonic, and there are at most n1+(k+1)p updates to the
cache. Since p ≤ n, we conclude:

Lemma 10. The control flow problem for kCFA is contained in EXPTIME.

It is worth noting that this result shows, from a complexity perspective, the flatness
of the kCFA hierarchy: for any constant k, kCFA is decidable in exponential time.
It is not the case, for example, that 1CFA requires exponential time (for all j,
DTIME(2nj

) ⊆ EXPTIME), while 2CFA requires doubly exponential time (for all j,
DTIME(22nj

) ⊆ 2EXPTIME), 3CFA requires triply exponential time, etc. There are
strict separation results for these classes, EXPTIME ⊂ 2EXPTIME ⊂ 3EXPTIME,
etc., so we know from the above lemma there is no need to go searching for lower
bounds greater than EXPTIME.
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5.3 kCFA is NPTIME-hard

Because kCFA makes approximations, many closures can flow to a single program
point and contour. In 1CFA, for example, λw.wx1x2 · · ·xn has n free variables,
with an exponential number of possible associated environments mapping these
variables to program points (contours of length 1). Approximation allows us to
bind each xi, independently, to either of the closed λ-terms for True or False
that we saw in the PTIME-completeness proof for 0CFA. In turn, application to
an n-ary Boolean function necessitates computation of all 2n such bindings in
order to compute the flow out from the application site. The term True can
only flow out if the Boolean function is satisfiable by some truth valuation. For

(λf1.(f1 True)(f1 False))

(λx1.

(λf2.(f2 True)(f2 False))

(λx2.

(λf3.(f3 True)(f3 False))

(λx3.

· · ·
(λfn.(fn True)(fn False))

(λxn.

C[(λv.φ v)(λw.wx1x2 · · ·xn)]) · · ·))))

Figure 5.1: NPTIME-hard construction for kCFA.

an appropriately chosen program point (label) `, the cache location Ĉ(v, `) will
contain the set of all possible closures which are approximated to flow to v. This
set is that of all closures

〈(λw.wx1x2 · · ·xn), ρ〉

where ρ ranges over all assignments of True and False to the free variables
(or more precisely assignments of locations in the table containing True and
False to the free variables). The Boolean function φ is completely linear, as in
the PTIME-completeness proof; the context C uses the Boolean output(s) as in the
conclusion to that proof: mixing in some ML, the context is:
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- let val (u,u’)= [---] in
let val ((x,y),(x’,y’))= (u (f,g), u’ (f’,g’)) in

((x a, y b),(x’ a’, y’ b’)) end end;

Again, a can only flow as an argument to f if True flows to (u,u’), leaving
(f,g) unchanged, which can only happen if some closure 〈(λw.wx1x2 · · ·xn), ρ〉
provides a satisfying truth valuation for φ. We have as a consequence:

Theorem 8. The control flow problem for 1CFA is NPTIME-hard.

Having established this lower bound for 1CFA, we now argue the result general-
izes to all values of k > 0. Observe that by going from kCFA to (k + 1)CFA,
further context-sensitivity is introduced. But, this added precision can be undone
by inserting an identity function application at the point relevant to answering the
flow question. This added calling context consumes the added bit of precision in
the analysis and renders the analysis of rest of the program equivalently to the
courser analysis. Thus, it is easy to insert an identity function into the above con-
struction such that 2CFA on this program produces the same results as 1CFA on
the original. So for any k > 1, we can construct an NPTIME-hard computation by
following the above construction and inserting k−1 application sites to eat up the
precision added beyond 1CFA. The result is equivalent to 1CFA on the original
term, so we conclude:

Theorem 9. The control flow problem for kCFA is NPTIME-hard, for any k > 0.

At this point, there is a tension in the results. On the one hand, kCFA is contained
in EXPTIME; on the other, kCFA requires at least NPTIME-time to compute. So
a gap remains; either the algorithm for computing kCFA can be improved and
put into NPTIME, or the lower bound can be strengthened by exploiting more
computational power from the analysis.

We observe that while the computation of the entire cache requires exponential
time, perhaps the existence of a specific flow in it may well be computable in
NPTIME. A non-deterministic algorithm might compute using the “collection se-
mantics” EJt`Kρ

δ , but rather than compute entire sets, choose the element of the set
that bears witness to the flow. If so we could conclude kCFA is NPTIME-complete.

However, this is not the case. We show that the lower bound can be improved
and kCFA is complete for EXPTIME. The improvement relies on simulating an
exponential iterator using analysis. The following section demonstrates the core
of the idea.
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5.4 Nonlinearity and Cartesian Products:
a toy calculation, with insights

A good proof has, at its heart, a small and simple idea that makes it work. For
our proof, the key idea is how the approximation of analysis can be leveraged
to provide computing power above and beyond that provided by evaluation. The
difference between the two can be illustrated by the following term:

(λf.(f True)(f False))
(λx.Impliesx x)

Consider evaluation: Here Impliesx x (a tautology) is evaluated twice, once
with x bound to True, once with x bound to False. But in both cases, the
result is True. Since x is bound to True or False both occurrences of x are
bound to True or to False—but it is never the case, for example, that the first
occurrence is bound to True, while the second is bound to False. The values
of each occurrence of x is dependent on the other.

On the other hand, consider what flows out of Impliesx x according 1CFA:
both True and False. Why? The approximation incurs analysis of Impliesx x
for x bound to True and False, but it considers each occurrence of x as ranging
over True and False, independently. In other words, for the set of values bound
to x, we consider their cross product when x appears nonlinearly. The approxi-
mation permits one occurrence of x be bound to True while the other occurrence
is bound to False; and somewhat alarmingly, ImpliesTrueFalse causes
False to flow out. Unlike in normal evaluation, where within a given scope we
know that multiple occurrences of the same variable refer to the same value, in the
approximation of analysis, multiple occurrences of the same variable range over
all values that they are possible bound to independent of each other.

Now consider what happens when the program is expanded as follows:

(λf.(f True)(f False))
(λx.(λp.p(λu.p(λv.Impliesuv)))(λw.wx))

Here, rather than pass x directly to Implies, we construct a unary tuple λw.wx.
The tuple is used nonlinearly, so p will range over closures of λw.wx with x bound
to True and False, again, independently.

A closure can be approximated by an exponential number of values. For exam-
ple, λw.wz1z2 . . . zn has n free variables, so there are an exponential number of
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possible environments mapping these variables to program points (contours of
length 1). If we could apply a Boolean function to this tuple, we would effectively
be evaluating all rows of a truth table; following this intuition leads to NPTIME-
hardness of the 1CFA control flow problem.

Generalizing from unary to n-ary tuples in the above example, an exponential
number of closures can flow out of the tuple. For a function taking two n-tuples,
we can compute the function on the cross product of the exponential number of
closures.

This insight is the key computational ingredient in simulating exponential time,
as we describe in the following section.

5.5 kCFA is EXPTIME-hard

5.5.1 Approximation and EXPTIME

Recall the formal definition of a Turing machine: a 7-tuple

〈Q, Σ, Γ, δ, q0, qa, qr〉

where Q, Σ, and Γ are finite sets, Q is the set of machine states (and {q0, qa, qr} ⊆
Q), Σ is the input alphabet, and Γ the tape alphabet, where Σ ⊆ Γ. The states
q0, qa, and qr are the machine’s initial, accept, and reject states, respectively. The
complexity class EXPTIME denotes the languages that can be decided by a Turing
machine in time exponential in the input length.

Suppose we have a deterministic Turing machine M that accepts or rejects its
input x in time 2p(n), where p is a polynomial and n = |x|. We want to simulate
the computation of M on x by kCFA analysis of a λ-term E dependent on M, x, p,
where a particular closure will flow to a specific program point iff M accepts x.
It turns out that k = 1 suffices to carry out this simulation. The construction,
computed in logarithmic space, is similar for all constant k > 1 modulo a certain
amount of padding as described in section 5.3.
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5.5.2 Coding Machine IDs

The first task is to code machine IDs. Observe that each value stored in the ab-
stract cache Ĉ is a closure—a λ-abstraction, together with an environment for its
free variables. The number of such abstractions is bounded by the program size,
as is the domain of the environment—while the number of such environments is
exponential in the program size. (Just consider a program of size n with, say, n/2
free variables mapped to only 2 program points denoting bindings.)

Since a closure only has polynomial size, and a Turing machine ID has exponential
size, we represent the latter by splitting its information into an exponential number
of closures. Each closure represents a tuple 〈T, S, H, C, b〉, which can be read as

“At time T , Turing machine M was in state S, the tape position was
at cell H , and cell C held contents b.”

T , S, H , and C are blocks of bits (0 ≡ True, 1 ≡ False) of size polynomial in
the input to the Turing machine. As such, each block can represent an exponential
number of values. A single machine ID is represented by an exponential number
of tuples (varying C and b). Each such tuple can in turn be coded as a λ-term
λw.wz1z2 · · · zN , where N = O(p(n)).

We still need to be able to generate an exponential number of closures for such
an N -ary tuple. The construction is only a modest, iterative generalization of the
construction in our toy calculation above:

(λf1.(f1 0)(f1 1))
(λz1.

(λf2.(f2 0)(f2 1))
(λz2.
· · ·

(λfN .(fN 0)(fN 1))
(λzN .((λx.x)(λw.wz1z2 · · · zN))`) · · ·))

Figure 5.2: Generalization of toy calculation for kCFA.

In the inner subterm,
((λx.x)(λw.wz1z2 · · · zN))`,
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the function λx.x acts as a very important form of padding. Recall that this is
kCFA with k = 1—the expression (λw.wz1z2 · · · zN) is evaluated an exponen-
tial number of times—to see why, normalize the term—but in each instance, the
contour is always `. (For k > 1, we would just need more padding to evade the
polyvariance of the flow analyzer.) As a consequence, each of the (exponential
number of) closures gets put in the same location of the abstract cache Ĉ, while
they are placed in unique, different locations of the exact cache C. In other words,
the approximation mechanism of kCFA treats them as if they are all the same.
(That is why they are put in the same cache location.)

5.5.3 Transition Function

Now we define a binary transition function δ, which does a piecemeal transition
of the machine ID. The transition function is represented by three rules, identified
uniquely by the time stamps T on the input tuples.

The first transition rule is used when the tuples agree on the time stamp T , and
the head and cell address of the first tuple coincide:

δ〈T, S, H, H, b〉〈T, S ′, H ′, C ′, b′〉 =
〈T + 1, δQ(S, b), δLR(S, H, b), H, δΣ(S, b)〉

This rule computes the transition to the next ID. The first tuple has the head ad-
dress and cell address coinciding, so it has all the information needed to compute
the next state, head movement, and what to write in that tape cell. The second
tuple just marks that this is an instance of the computation rule, simply indicated
by having the time stamps in the tuples to be identical. The Boolean functions
δQ, δLR, δΣ compute the next state, head position, and what to write on the tape.

The second communication rule is used when the tuples have time stamps T + 1
and T : in other words, the first tuple has information about state and head position
which needs to be communicated to every tuple with time stamp T holding tape
cell information for an arbitrary such cell, as it gets updated to time stamp T + 1:

δ〈T + 1, S,H, C, b〉〈T, S ′, H ′, C ′, b′〉 = 〈T + 1, S,H, C ′, b′〉
(H ′ 6= C ′)

(Note that when H ′ = C ′, we have already written the salient tuple using the
transition rule.) This rule communicates state and head position (for the first tuple
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computed with time stamp T + 1, where the head and cell address coincided) to
all the other tuples coding the rest of the Turing machine tape.

Finally, we define a catch-all rule, mapping any other pairs of tuples (say, with
time stamps T and T + 42) to some distinguished null value (say, the initial ID).
We need this rule just to make sure that δ is a totally defined function.

δ〈T, S, H, C, b〉〈T ′, S ′, H ′, C ′, b′〉 = Null
(T 6= T ′ and T 6= T ′ + 1)

Clearly, these three rules can be coded by a single Boolean circuit, and we have
all the required Boolean logic at our disposal from section 3.5.

Because δ is a binary function, we need to compute a cross product on the cod-
ing of IDs to provide its input. The transition function is therefore defined as in
Figure 5.3. The Copy functions just copy enough of the input for the separate cal-

Φ ≡ λp.
let 〈u1, u2, u3, u4, u5〉 = Copy5 p in
let 〈v1, v2, v3.v4, v5〉 = Copy5 p in

(λw.w(φT u1v1)(φSu2v2) . . . (φbu5v5))
(λwT .λwS.λwH .λwC .λwb.

wT (λz1.λz2 . . . λzT .
wS(λzT+1.λzT+2 . . . λzT+S.

. . .
wb(λzC+1.λzC+2 . . . λzC+b=m.

λw.wz1z2 . . . zm) . . .)))

Figure 5.3: Turing machine transition function construction.

culations to be implemented in a linear way. Observe that this λ-term is entirely
linear except for the two occurrences of its parameter p. In that sense, it serves
a function analogous to λx.Impliesx x in the toy calculation. Just as x ranges
there over the closures for True and for False, p ranges over all possible IDs
flowing to the argument position. Since there are two occurrences of p, we have
two entirely separate iterations in the kCFA analysis. These separate iterations,
like nested “for” loops, create the equivalent of a cross product of IDs in the “inner
loop” of the flow analysis.
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C ≡ (λf1.(f1 0)(f1 1))
(λz1.

(λf2.(f2 0)(f2 1))
(λz2.
· · ·

(λfN .(fN 0)(fN 1))
(λzN .((λx.x)(Widget(Extract[ ]))`)`′) · · ·))

Figure 5.4: EXPTIME-hard construction for kCFA.

5.5.4 Context and Widget

The context for the Turing machine simulation needs to set up the initial ID and
associated machinery, extract the Boolean value telling whether the machine ac-
cepted its input, and feed it into the flow widget that causes different flows de-
pending on whether the value flowing in is True or False. In this code, the
λx.x (with label `′ on its application) serve as padding, so that the term within is
always applied in the same contour. Extract extracts a final ID, with its time
stamp, and checks if it codes an accepting state, returning True or False ac-
cordingly. Widget is our standard control flow test. The context is instantiated
with the coding of the transition function, iterated over an initial machine ID,

2n Φ λw.w0 . . .0 · · ·Q0 · · ·H0 · · · z1z2 . . . zN0,

where Φ is a coding of transition function for M . The λ-term 2n is a fixed point
operator for kCFA, which can be assumed to be either Y, or an exponential func-
tion composer. There just has to be enough iteration of the transition function to
produce a fixed point for the flow analysis.

To make the coding easy, we just assume without loss of generality that M starts
by writing x on the tape, and then begins the generic exponential-time computa-
tion. Then we can just have all zeroes on the initial tape configuration.

Lemma 11. For any Turing machine M and input x of length n, where M accepts
or rejects x in 2p(n) steps, there exists a logspace-constructable, closed, labeled
λ-term e with distinguished label ` such that in the kCFA analysis of e (k > 0),
True flows into ` iff M accepts x.
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Theorem 10. The control flow problem for kCFA is complete for EXPTIME for
any k > 0.

5.6 Exact kCFA is PTIME-complete

At the heart of the EXPTIME-completeness result is the idea that the approximation
inherent in abstract interpretation is being harnessed for computational power,
quite apart from the power of exact evaluation. To get a good lower bound, this
is necessary: it turns out there is a dearth of computation power when kCFA
corresponds with evaluation, i.e. when the analysis is exact.

As noted earlier, approximation arises from the truncation of contours during anal-
ysis. Consequently, if truncation never occurs, the instrumented interpreter and
the abstract interpreter produce identical results for the given program. But what
can we say about the complexity of these programs? In other words, what kind
of computations can kCFA analyze exactly when k is a constant, independent of
the program analyzed? What is the intersection between the abstract and concrete
interpreter?

An answer to this question provides another point in the characterization of the
expressiveness of an analysis. For 0CFA, the answer is PTIME since the evaluation
of linear terms is captured. For kCFA, the answer remains the same.

For any fixed k, kCFA can only analyze polynomial time programs exactly, since,
in order for an analysis to be exact, there can only one entry in each cache location,
and there are only nk+1 locations. But from this it is clear that only through
the use of approximation that a exponential time computation can be simulated,
but this computation has little to do with the actual running of the program. A
program that runs for exponential time cannot be analyzed exactly by kCFA for
any constant k.

Contrast this with ML-typability, for example, where the evaluation of programs
that run for exponential time can be simulated via type inference.

Note that if the contour is never truncated, every program point is now approx-
imated by at most one closure (rather than an exponential number of closures).
The size of the cache is then bounded by a polynomial in n; since the cache is
computed monotonically, the analysis and the natural related decision problem is
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constrained by the size and use of the cache.

Proposition 1. Deciding the control flow problem for exact kCFA is complete for
PTIME.

This proposition provides a characterization of the computational complexity (or
expressivity) of the language evaluated by the instrumented evaluator E of section
section 2.2 as a function of the contour length.

It also provides an analytic understanding of the empirical observation researchers
have made: computing a more precise analysis is often cheaper than performing
a less precise one, which “yields coarser approximations, and thus induces more
merging. More merging leads to more propagation, which in turn leads to more
reevaluation” (Wright and Jagannathan 1998). Might and Shivers (2006b) make a
similar observation: “imprecision reinforces itself during a flow analysis through
an ever-worsening feedback loop.” This ever-worsening feedback loop, in which
we can make False (spuriously) flow out of Impliesx x, is the critical ingre-
dient in our EXPTIME lower bound.

Finally, the asymptotic differential between the complexity of exact and abstract
interpretation shows that abstract interpretation is strictly more expressive, for any
fixed k.

5.7 Discussions

We observe an “exponential jump” between contour length and complexity of
the control flow decision problem for every polynomial-length contour, including
contours of constant length. Once k = n (contour length equals program size), an
exponential-time hardness result can be proved which is essentially a linear circuit
with an exponential iterator—very much like Mairson (1990). When the contours
are exponential in program length, the decision problem is doubly exponential,
and so on.

The reason for this exponential jump is the cardinality of environments in closures.
This, in fact, is the bottleneck for control flow analysis—it is the reason that 0CFA
(without closures) is tractable, while 1CFA is not. If f(n) is the contour length
and n is the program length, then

|CEnv| = |Var→ ∆≤f(n)| = (nf(n))n = 2f(n)n lg n
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This cardinality of environments effectively determines the size of the universe of
values for the abstract interpretation realized by CFA.

When k is a constant, one might ask why the inherent complexity is exponential
time, and not more—especially since one can iterate (in an untyped world) with
the Y combinator. Exponential time is the “limit” because with a polynomial-
length tuple (as constrained by a logspace reduction), you can only code an expo-
nential number of closures.

The idea behind kCFA is that the precision of could dialed up, but there are es-
sentially two settings to the kCFA hierarchy: high (k > 0, EXPTIME) and low
(k = 0). We can see, from a computational complexity perspective, that 0CFA
is strictly less expressive than kCFA. In turn, kCFA is strictly less expressive
than, for example, Mossin’s flow analysis (1997a). Mossin’s analysis is a stronger
analysis in the sense that it is exact for a larger class of programs than 0CFA or
kCFA—it exact not only for linear terms, but for all simply-typed terms. In other
words, the flow analysis of simply-typed programs is synonymous with running
the program, and hence non-elementary. This kind of expressivity is also found in
Burn-Hankin-Abramsky-style strictness analysis (1985). But there is a consider-
able gap between kCFA and these more expressive analyses. What is in between
and how can we build a real hierarchy of static analyses that occupy positions
within this gap?

This argues that the relationship between dial level N and N + 1 should be exact.
This is the case with say simple-typing and ML-typing. (ML = simple + let re-
duction). There is no analogous relationship known between k and k + 1CFA. A
major computational expense in kCFA is the approximation engendering further
approximation and re-evaluation. Perhaps by staging analysis into polyvariance
and approximation phases, the feedback loop of spurious flows can be avoided.

If you had an analysis that did some kind of exact, bounded, evaluation of the
program and then analyzed the residual with 0CFA, you may have a far more
usable analysis than with the kCFA hierarchy.

The precision of kCFA is highly sensitive to syntactic structure. Simple program
refactorings such as η-expansion have drastic effects on the results of kCFA and
can easily undermine the added work of a more and more precise analysis. Indeed,
we utilize these simple refactorings to undermine the added precision of kCFA to
generalize the hardness results from the case of 1CFA to all k > 0 CFA. But an
analysis that was robust in the face of these refactorings could undermine these
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lower bounds.

In general, techniques that lead to increased precision will take computational
power away from our lower bound constructions. For instance, it is not clear what
could be said about lower bounds on the complexity of a variant of kCFA that
employed abstract garbage collection (Might and Shivers 2006b), which allows
for the safe removal of values from the cache during computation. It is critical in
the lower bound construction that what goes into the cache, stays in the cache.

Lévy’s notion of labeled reduction (1978; 1980) provides a richer notion of “in-
strumented evaluation” coupled with a richer theory of exact flow analysis, namely
the geometry of interaction (Girard 1989; Gonthier et al. 1992). With the proper
notion of abstraction and simulated reduction, we should be able to design more
powerful flow analyses, filling out the hierarchy from 0CFA up to the expressivity
of Mossin’s analysis in the limit.

5.8 Conclusions

Empirically observed increases in costs can be understood analytically as inherent
in the approximation problem being solved.

We have given an exact characterization of the kCFA approximation problem. The
EXPTIME lower bound validates empirical observations and shows that there is no
tractable algorithm for kCFA.

The proof relies on previous insights about linearity, static analysis, and normal-
ization (namely, when a term is linear, static analysis and normalization are syn-
onymous); coupled with new insights about using nonlinearity to realize the full
computational power of approximate, or abstract, interpretation.

Shivers wrote in his best of PLDI retrospective (2004),

Despite all this work on formalising CFA and speeding it up, I have
been disappointed in the dearth of work extending its power.

This work has shown that work spent on speeding up kCFA is an exercise in futil-
ity; there is no getting around the exponential bottleneck of kCFA. The one-word
description of the bottleneck is closures, which do not exist in 0CFA, because free
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variables in a closure would necessarily map to ε, and hence the environments are
useless.

This detailed accounting of the ingredients that combine to make kCFA hard,
when k > 0, should provide guidance in designing new abstractions that avoid
computationally expensive components of analysis. A lesson learned has been
that closures, as they exist when k > 0, result in an exponential value space that
can be harnessed for the EXPTIME lower-bound construction.
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Chapter 6

Related Work

This dissertation draws upon several large veins of research. At the highest level,
this includes complexity, semantics, logic, and program analysis. This chapter
surveys related work to sketch applications and draw parallels with existing work.

6.1 Monovariant Flow Analysis

In the setting of first-order programming languages, Reps (1996) gives a com-
plexity investigation of program analyses and shows interprocedural slicing to
be complete for PTIME and that obtaining “meet-over-all-valid-paths” solutions
of distributive data-flow analysis problems (Hecht 1977) is PTIME-hard in gen-
eral, and PTIME-complete when there are only a finite number of data-flow facts.
A circuit-value construction by interprocedural data-flow analysis is given using
Boolean circuitry encoded as call graph gadgets, similar in spirit to our construc-
tions in chapter 3.

In the setting of higher-order programming languages, Melski and Reps (2000)
give a complexity investigation of 0CFA-like, inclusion-based monovariant flow
analysis for a functional language with pattern matching. The analysis takes the
form of a constraint satisfaction problem and this satisfaction problem is shown
to be complete for PTIME. See section 6.3 for further discussion.

The impact of pattern matching on analysis complexity is further examined by
Heintze and McAllester (1997b), which shows how deep pattern matching affects
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monovariant analysis, making it complete for EXPTIME.

6.2 Linearity and Static Analysis

Jagannathan et al. (1998) observe that flow analysis, which is a may analysis, can
be adapted to answer must analysis questions by incorporating a “per-program-
point variable cardinality map, which indicates whether all reachable environ-
ments binding a variable x hold the same value. If so, x is marked single at
that point; otherwise x is marked multiple.” The resulting must-alias information
facilities program optimization such as lightweight closure conversion (Steckler
and Wand 1997). This must analysis is a simple instance of tracking linearity in-
formation in order to increase the precision of the analysis. Might and Shivers
(2006b) use a similar approach of abstract counting, which distinguish singleton
and non-singleton flow sets, to improve flow analysis precision.

Something similar can be observed in 0CFA without cardinality maps; singleton
flow sets Ĉ(`) = {λx.e}, which are interpreted as “the expression labelled ` may
evaluate to one of {λx.e},” convey must information. The expression labelled
` either diverges or evaluates to λx.e. When λx.e is linearly closed—the vari-
ables map to singleton sets containing linear closures—then the run-time value
produced by the expression labelled ` can be determined completely at analysis
time. The idea of taking this special case of must analysis within a may analysis
to its logical conclusion is the basis of chapter 3.

Damian and Danvy (2003) have investigated the impact of linear β-reduction on
the result of flow analysis and show how leastness is preserved. The result is used
to show that leastness is preserved through CPS and administrative reductions,
which are linear.

An old, but key, observation about the type inference problem for simply typed λ-
terms is that, when the term is linear (every bound variable occurs exactly once),
the most general type and normal form are isomorphic (Hindley 1989; Hirokawa
1991; Henglein and Mairson 1991; Mairson 2004).1

The observation translates to flow analysis, as shown in chapter 3, but in a typed

1The seed of inspiration for this work came from a close study of Mairson (2004) in the Spring
of 2005 for a seminar presentation given in a graduate course on advanced topics in complexity
theory at the University of Vermont.
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setting, it also scales to richer systems. The insight leads to an elegant reproof of
the EXPTIME-hardness of ML-type inference result from Mairson (1990) (Hen-
glein 1990). It was used to prove novel lower bounds on type inference for Sys-
tem Fω (Henglein and Mairson 1991) and rank-bound intersection type inference
(Møller Neergaard and Mairson 2004). See section 6.10 for further discussion.

6.3 Context-Free-Language Reachability

Melski and Reps (2000) show the interconvertibility between a number of set-
constraint problems and the context-free-language (CFL) reachability problem,
which is known to be complete for PTIME (Ullman and van Gelder 1986). Heintze
(1994) develops a set-based approach to flow analysis for a simple untyped func-
tional language with functions, applications, pattern-matching, and recursion. The
analysis works by making a pass over the program, generating set constraints,
which can then be solved to compute flow analysis results. Following Melski and
Reps, we refer to this constraint system as ML set-constraints. For the subset of
the language considered in this dissertation, solving these constraints computes a
monovariant flow analysis that coincides with 0CFA.

In addition to the many set-constraint problems considered, which have applica-
tions to static analysis of first-order programming languages, Melski and Reps
(2000, section 5) also investigate the problem of solving the ML set-constraints
used by Heintze. They show this class of set-constraint problems can be solved
in cubic time with respect to the size of the input constraints. Since Heintze
(1994) gave a O(n3) algorithm for solving these constraints, Melski and Reps’ re-
sult demonstrates the conversion to CFL-reachability preserves cubic-solvability,
while allowing CFL-reachability formulations of static analyses, such as program
slicing and shape analysis, to be brought to bear on higher-order languages, where
previously they had only been applied in a first-order setting.

After showing ML set-constraints can be solved using CFL-reachability, Mel-
ski and Reps (2000, section 6) also prove the converse holds: CFL-reachability
problems can be solved by reduction to ML set-constraint problems while pre-
serving the worse-case asymptotic complexity. By the known PTIME-hardness of
CFL-reachability, this implies ML set-constraint satisfaction is PTIME-complete.
It does not follow, however, that 0CFA is also PTIME-complete.
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It is worth noting that Melski and Reps are concerned with constraint satisfaction,
and not directly with flow analysis—the two are intimately related, but the dis-
tinction is important. It follows as a corollary that since ML set-constraints can be
solved, through a reduction to CFL-reachability, flow analysis can be performed in
cubic time. Heintze (1994, page 314) observes that the size of the set-constraint
problem generated by the initial pass of the program is linear in the size of the
program being analyzed. Therefore it is straightforward to derive from the ML
set-constraint to CFL-reachability reduction the (known) inclusion of 0CFA in
PTIME.

In the other direction, it is not clear that it follows from the PTIME-hardness of
ML set-constraint satisfaction that flow analysis of Heintze’s subject language is
PTIME-hard. Melski and Reps use the constraint language directly in their encod-
ing of CFL-reachability. What remains to be seen is whether there are programs
which could be constructed that would induce these constraints. Moreover, their
reduction relies soley on the “case” constraints of Heintze, which are set con-
straints induced by pattern matching expressions in the source language.

If the source language lacks pattern matching, the Boolean circuit machinery of
Melski and Reps can no longer be constructed since no expressions induce the
needed “case” constraints. For this language, the PTIME-hardness of constraint
satisfaction and 0CFA does not follow from the results of Melski and Reps.

This reiterates the importance of Reps’ own observation that analysis problems
should be formulated in “trimmed-down form,” which both leads to a wider ap-
plicability of the lower bounds and “allows one to gain greater insight into exactly
what aspects of an [. . . ] analysis problem introduce what computational limita-
tions on algorithms for these problems,” (Reps 1996, section 2).

By considering only the core subset of every higher-order programming language
and relying on the specification of analysis, rather than its implementation tech-
nology, the 0CFA PTIME-completeness result implies as an immediate corollary
the PTIME-completeness of the ML set-constraint problem considered by Melski
and Reps. Moreover, as we have seen, our proof technique of using linearity to
subvert approximation is broadly applicable to further analysis approximations,
whereas CFL-reachability reductions must be replayed mutatis mutandis.
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6.4 2NPDA and the Cubic Bottleneck

The class 2NPDA contains all languages that are recognizable by a two-way non-
deterministic push-down automaton.2 The familiar PDAs found in undergraduate
textbooks (Martin 1997), both deterministic and non-deterministic, are one-way:
consuming their input from left-to-right. In contrast, two-way NPDAs accept their
input on a read-only input tape marked with special begin and end markers, on
which they can move the read-head forwards, backwards, or not at all.

Over a decade ago, Heintze and McAllester (1997c) proved deciding a monovari-
ant flow analysis problem to be at least as hard as 2NPDA, and argued this provided
evidence the “cubic bottleneck” of flow analysis was unlikely to be overcome
since the best known algorithm for 2NPDA was cubic and had not been improved
since its formulation by Aho et al. (1968). This statement was made by several
other papers (Neal 1989; Heintze and McAllester 1997c,a; Melski and Reps 2000;
McAllester 2002; Van Horn and Mairson 2008b). Yet collectively, this is simply
an oversight in the history of events; Rytter (1985) improved the cubic bound by
a logarithmic factor.

Since then, Rytter’s technique has been used in various contexts: in diameter
verification, in Boolean matrix multiplication, and for the all pairs shortest paths
problem (Basch et al. 1995; Zwick 2006; Chan 2007), as well as for reachability in
recursive state machines (Chaudhuri 2008), and for maximum node-weighted k-
clique (Vassilevska 2009) to name a few. In particular, Chaudhuri (2008) recently
used Rytter’s techniques to formulate a subcubic algorithm for the related problem
of context-free language (CFL) reachability. Perhaps unknown to most, indirectly
this constitutes the first subcubic inclusion-based flow analysis algorithm when
combined with a reduction due to Melski and Reps (2000).

The logarithmic improvement can be carried over to the flow analysis problem
directly, by applying the same known set compression techniques Rytter (1985)
applies to improve deciding 2NPDA. Moreover, refined analyses similar to Heintze
and McAllester (1997b) that incorporate notions of reachability to improve preci-
sion remain subcubic. See Midtgaard and Van Horn (2009) for details.

0CFA is complete for both 2NPDA (Heintze and McAllester 1997c) and PTIME

(chapter 3). Yet, it is not clear what relation these class have to each other.

2This section is derived from material in Midtgaard and Van Horn (2009).
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The 2NPDA inclusion proof of Heintze and McAllester is sensitive to representa-
tion choices and problem formulations. They use an encoding of programs that
requires a non-standard bit string labelling scheme in which identical subterms
have the same labels. The authors remark that without this labelling scheme, the
problem “appears not to be in 2NPDA.”

Moreover, the notions of reduction employed in the definitions of 2NPDA-hardness
and PTIME-hardness rely on different computational models. For a problem to be
2NPDA-hard, all problems in the class must be reducible to it in O(nR(log n))
time on a RAM, where R is a polynomial. Whereas for a problem to be PTIME-
hard, all problems in the class must be reducible to it using a O(log n) space
work-tape on a Turing machine.

6.5 kCFA

Our coding of Turing machines is descended from work on Datalog (Prolog with
variables, but without constants or function symbols), a programming language
that was of considerable interest to researchers in database theory during the
1980s; see Hillebrand et al. (1995); Gaifman et al. (1993).

In kCFA and abstract interpretation more generally, an expression can evaluate to
a set of values from a finite universe, clearly motivating the idiom of program-
ming with sets. Relational database queries take as input a finite set of tuples,
and compute new tuples from them; since the universe of tuples is finite and the
computation is monotone, a fixed-point is reached in a finite number of iterations.
The machine simulation here follows that framework very closely. Even the idea
of splitting a machine configuration among many tuples has its ancestor in Hille-
brand et al. (1995), where a ternary cons(A, L, R) is used to simulate a cons-cell
at memory address A, with pointers L, R. It needs emphasis that the computing
with sets described in this paper has little to do with normalization, and everything
to do with the approximation inherent in the abstract interpretation.

Although kCFA and ML-type inference are two static analyses complete for EX-
PTIME (Mairson 1990), the proofs of these respective theorems is fundamentally
different. The ML proof relies on type inference simulating exact normalization
(analogous to the PTIME-completeness proof for 0CFA), hence subverting the ap-
proximation of the analysis. In contrast, the kCFA proof harnesses the approxi-
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mation that results from nonlinearity.

6.6 Class Analysis

Flow analysis of functional languages is complicated by the fact that computa-
tions are expressible values. This makes basic questions about control flow un-
decidable in the general case. But the same is true in object-oriented programs—
computations may be package up as values, passed as arguments, stored in data-
structures, etc.—and so program analyses in object-oriented settings often deal
with the same issues as flow analysis. A close analogue of flow analysis is class
analysis.

Expressions in object-oriented languages may have a declared class (or type) but,
at run-time, they can evaluate to objects of every subclass of the class. Class
analysis computes the actual set of classes that an expression can have at run-
time (Johnson et al. 1988; Chambers and Ungar 1990; Palsberg and Schwartzbach
1991; Bacon and Sweeney 1996). Class analysis is sometimes called receiver
class analysis, type analysis, or concrete type inference; it informs static method
resolution, inlining, and other program optimizations.

An object-oriented language is higher-order in the same way as a language with
first-class functions and exactly the same circularity noted by Shivers occurs in
the class analysis of an object-oriented language.

Grove and Chambers (2001):

In object-oriented languages, the method invoked by a dynamically
dispatched message send depends on the class of the object receiv-
ing the message; in languages with function values, the procedure in-
voked by the application of a computed function value is determined
by the function value itself. In general, determining the flow of val-
ues needed to build a useful call graph requires an interprocedural
data and control flow analysis of the program. But interprocedural
analysis in turn requires that a call graph be built prior to the analysis
being performed.

Ten years earlier, Shivers (1991, page 6)3 had written essentially the same:
3It is a testament to Shivers’ power as a writer that his original story has been told over and over

94



CHAPTER 6. RELATED WORK

So, if we wish to have a control-flow graph for a piece of Scheme
code, we need to answer the following question: for every procedure
call in the program, what are the possible lambda expressions that
call could be a jump to? But this is a flow analysis question! So with
regard to flow analysis in an HOL, we are faced with the following
unfortunate situation:

• In order to do flow analysis, we need a control-flow graph.

• In order to determine control-flow graphs, we need to do flow
analysis.

Class analysis is often presented using the terminology of type inference, however
these type systems typically more closely resemble flow analysis: types are finite
sets of classes appearing syntactically in the program and subtyping is interpreted
as set inclusion.

In other words, objects are treated much like functions in the flow analysis of a
functional language—typically both are approximated by a set of definition sites,
i.e. an object is approximated by a set of class names that appear in the program;
a function is approximated by a set of λ occurrences that appear in the program.
In an object-oriented program, we may ask of a subexpression, what classes may
the subexpression evaluate to? In a functional language we may ask, what λ terms
may this expression evaluate to? Notice both are general questions that analysis
must answer in a higher order setting if you want to know about control flow. To
know where control may transfer to from (f x) we have to know what f may
be. To know where control may transfer to from f.apply(x) we have to know
what f may be. In both cases, if we approximate functions by sets of λs and
objects by sets of class names, we may determine a set of possible places in code
where control may transfer, but we will not know about the environment of this
code, i.e. the environment component of a closure or the record component of an
object.

Spoto and Jensen (2003) give a reformulation of several class analyses, including
that of Palsberg and Schwartzbach (1991); Bacon and Sweeney (1996); Diwan
et al. (1996), using abstract interpretation.

DeFouw et al. (1998) presents a number of variations on the theme of monovariant
class analysis. They develop a framework that can be instantiated to obtain inclu-

again in so many places, usually with half the style.
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sion, equality, and optimistic based class analyses with close analogies to 0CFA,
simple closure analysis, and rapid type analysis (Bacon and Sweeney 1996), re-
spectively. Each of these instantiations enjoy the same asymptotic running times
as their functional language counterparts; cubic, near linear, and linear, respec-
tively.

Although some papers give upper bounds for the algorithms they present, there
are very few lower bound results in the literature.4

Class analysis is closely related to points-to analysis in object-oriented languages.
“Points-to analysis is a fundamental static analysis used by optimizing compilers
and software engineering tools to determine the set of objects whose addresses
may be stored in reference variables and reference fields of objects,” (Milanova
et al. 2005). When a points-to analysis is flow-sensitive—“analyses take into ac-
count the flow of control between program points inside a method, and compute
separate solutions for these points,” (Milanova et al. 2005)—the analysis neces-
sarily involves some kind of class analysis.

In object-oriented languages, context-sensitive is typically distinguished as being
object-sensitive (Milanova et al. 2005), call-site sensitive (Grove and Chambers
2001), or partially flow sensitivity (Rinetzky et al. 2008).

Grove and Chambers (2001) provide a framework for a functional and object-
oriented hybrid language that can be instantiated to obtain a kCFA analysis and
an object-oriented analogue called k-l-CFA. There is a discussion and references
in Section 9.1. In this discussion, Grove and Chambers (2001) cite Oxhøj et al.
(1992) as giving “1-CFA extension to Palsberg and Schwartzbach’s algorithm,”
although the paper develops the analysis as a type inference problem. Grove and
Chambers also cite Vitek et al. (1992) as one of several “adaptations of kCFA to
object-oriented programs,” and although this paper actually has analogies to kCFA
in an object-oriented setting (they give a call-string approach to call graph context
sensitivity in section 7), it seems to be developed completely independently of
Shivers’ kCFA work or any functional flow analysis work.

The construction of Figure 5.2 can be translated in an object-oriented language
such as Java, as given in Figure 6.1.5 Functions are simulated as objects with
an apply method. The crucial subterm in Figure 6.1 is the construction of the list

4I was able to find zero papers that deal directly with lower bounds on class analysis complexity.
5This translation is Java except for the made up list constructor and some abbreviation in type
names for brevity, i.e. B is shorthand for Boolean.
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new Fun<Fun<B,List<B>>,List<B>>() {
public List<B> apply(Fun<B,List<B>> f1) {
f1.apply(true);
return f1.apply(false);

}
}.apply(new Fun<B,List<B>>() {
public List<B> apply(final B x1) {
return
new Fun<Fun<B,List<B>>,List<B>>() {
public List<B> apply(Fun<B,List<B>> f2) {
f2.apply(true);
return f2.apply(false);

}
}.apply(new Fun<B,List<B>>() {
public List<B> apply(final B x2) {
return
...
new Fun<Fun<B,List<B>>,List<B>>() {
public List<B> apply(Fun<B,List<B>> fn) {
fn.apply(true);
return fn.apply(false);

}
}.apply(new Fun<B,List<B>>() {
public List<B> apply(final B xn) {
return
new List<B>{x1,x2,...xn};}}

Figure 6.1: Translation of kCFA EXPTIME-construction into an object-oriented
language.
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{x1,x2,..xn}, where xi occur free with the context of the innermost “lambda”
term, new Fun() {...}. To be truly faithful to the original construction, lists
would be Church-encoded, and thus represented with a function of one argument,
which is applied to x1 through xn. An analysis with a similar context abstraction
to 1CFA will approximate the term representing the list x1,x2,...,xn with
an abstract object that includes 1 bit of context information for each instance
variable, and thus there would be 2n values flowing from this program point, one
for each mapping xi to the calling context in which it was bound to either true
or false for all possible combinations. Grove and Chambers (2001) develop a
framework for call-graph construction which can be instantiated in the style of
1CFA and the construction above should be adaptable to show this instantiation is
EXPTIME-hard.

A related question is whether the insights about linearity can be carried over to
the setting of pointer analysis in a first-order language to obtain simple proofs of
lower bounds. If so, is it possible higher-order constructions can be transformed
systematically to obtain first-order constructions?

Type hierarchy analysis is a kind of class analysis particularly relevant to the dis-
cussion in section 2.5 and the broader applicability of the approach to proving
lower bounds employed in chapter 3. Type hierarchy analysis is an analysis of stat-
ically typed object-oriented languages that bounds the set of procedures a method
invocation may call by examining the type hierarchy declarations for method over-
rides. “Type hierarchy analysis does not examine what the program actually does,
just its type and method declarations,” (Diwan et al. 1996). It seems unlikely
that the technique of section 2.5 can be applied to prove lower bounds about this
analysis since it has nothing to do with approximating evaluation.

6.7 Pointer Analysis

Just as flow analysis plays a fundamental role in the analysis of higher-order func-
tional programs, pointer analysis6 plays a fundamental role in imperative lan-
guages with pointers (Landi 1992a) and object-oriented languages, and informs
later program analyses such as live variables, available expressions, and constant
propagation. Moreover, flow and alias analysis variants are often developed along

6Also known as alias and points-to analysis.
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the same axes and have natural analogues with each other.

For example, Henglein’s (1992) simple closure analysis and Steensgaard’s (1996)
points-to analysis are natural analogues. Both operate in near linear time by rely-
ing on equality-based (rather than inclusion-based) set constraints, which can be
implemented using a union-find data-structure. Steensgaard algorithm “is inspired
by Henglein’s (1991) binding time analysis by type inference,” which also forms
the conceptual basis for Henglein (1992). Palsberg’s (1995) and Heintze’s (1994)
constraint-based flow analysis and Andersen’s (1994) pointer analysis are simi-
larly analogous and bear a strong resemblance in their use of subset constraints.

To get a full sense of the correspondence between pointer analysis and flow anal-
ysis, read their respective surveys in parallel (Hind 2001; Midtgaard 2007). These
comprise major, mostly independent, lines of research. Given the numerous analo-
gies, it is natural to wonder what the pointer analysis parallels are to the results
presented in this dissertation. The landscape of the pointer analysis literature is
much like that of flow analysis; there are hundreds of papers; similar, over-loaded,
and abused terminology is frequently used; it concerns a huge variety of tools,
frameworks, notations, proof techniques, implementation techniques, etc. With-
out delving into too much detail, we recall some of the fundamental concepts of
pointer analysis, cite relevant results, and try to more fully develop the analogies
between flow analysis and pointer analysis.

A pointer analysis attempts to statically determine the possible run-time values
of a pointer. Given a program and two variables p and q, points-to analysis de-
termines if p can point to q (Chakaravarthy 2003). It is clear that in general,
like all interesting properties of programs, it is not decidable if p can point q.
A traditional assumption in this community is that all paths in the program are
executable. However, even under this conservative assumption, the problem is
undecidable. The history of pointer analysis can be understood largely in terms of
the trade-offs between complexity and precision.

Analyses are characterized along several dimensions (Hind 2001), but of particu-
lar relevance are those of:

• Equality-based: assignment is treated as an undirected flow of values.

• Subset-based: assignment is treated as a directed flow of values.

• Flow sensitivity
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A points-to analysis is flow-sensitive analysis if it is given the control flow
graph for the analyzed program. The control flow graphs informs the paths
considered when determining the points-to relation. A flow-insensitive anal-
ysis is not given the control flow graph and it is assumed statements can be
executed in any order. See also section 4.4 of Hind (2001) and section 2.3
of Rinetzky et al. (2008).

• Context sensitivity

calling context is considered when analyzing a function so that calls return
to their caller. See also section 4.4 of (Hind 2001).

Bravenboer and Smaragdakis (2009) remark:

In full context-sensitive pointer analysis, there is an ongoing search
for context abstractions that provide precise pointer information,
and do not cause massive redundant computation.7

The complexity of pointer analysis has been deeply studied (Myers 1981; Landi
and Ryder 1991; Landi 1992a,b; Choi et al. 1993; Ramalingam 1994; Horwitz
1997; Muth and Debray 2000; Chatterjee et al. 2001; Chakaravarthy and Horwitz
2002; Chakaravarthy 2003; Rinetzky et al. 2008).

Flow sensitive points-to analysis with dynamic memory is not decidable (Landi
1992b; Ramalingam 1994; Chakaravarthy 2003). Flow sensitive points-to anal-
ysis without dynamic memory is PSPACE-hard (Landi 1992a; Muth and Debray
2000), even when pointers are well-typed and restricted to only two levels of
dereferencing (Chakaravarthy 2003). Context-sensitive pointer analysis can be
done efficiently in practice (Emami et al. 1994; Wilson and Lam 1995). Flow and
context-sensitive points-to analysis for Java can be efficient and practical even for
large programs (Milanova et al. 2005).

See Muth and Debray (2000); Chakaravarthy (2003) for succinct overview of
complexity results and open problems.

7That search has been reflected in the functional community as well, see for example, Shivers
(1991); Jagannathan and Weeks (1995); Banerjee (1997); Faxén (1997); Nielson and Nielson
(1997); Sereni (2007); Ashley and Dybvig (1998); Wright and Jagannathan (1998); Might and
Shivers (2006a); Might (2007).
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6.8 Logic Programming

McAllester (2002) argues “bottom-up logic program presentations are clearer and
simpler to analyze, for both correctness and complexity” and provides theorems
for characterizing their run-time. McAllester argues bottom-up logic program-
ming is especially appropriate for static analysis algorithms. The paper gives a
bottom-up logic presentation of evaluation (Fig. 4) and flow analysis (Fig 5.) for
the λ-calculus with pairing and uses the run-time theorem to derive a cubic upper
bound for the analysis.

Recent work by Bravenboer and Smaragdakis (2009) demonstrates how Datalog
can be used to specify and efficiently implement pointer analysis. By the PTIME-
completeness of Datalog, any analysis that can be specified is included in PTIME.

This bears a connection to the implicit computational complexity program, which
has sought to develop syntactic means of developing programming languages that
capture some complexity class (Hofmann 1998; Leivant 1993; Hofmann 2003;
Kristiansen and Niggl 2004). Although this community has focused on general
purpose programming languages—with only limited success in producing usable
systems—it seems that restricting the domain of interest to program analyzers
may be a fruitful line of work to investigate.

The EXPTIME construction of section 5.5 has a conceptual basis in Datalog com-
plexity research (Hillebrand et al. 1995; Gaifman et al. 1993). See section 6.5 for
a discussion.

6.9 Termination Analysis

Termination analysis of higher-order programs (Jones and Bohr 2008; Sereni and
Jones 2005; Giesl et al. 2006; Sereni 2007) is inherently tied to some underlying
flow analysis.

Recent work by Sereni and Jones on the termination analysis of higher-order lan-
guages has relied on an initial control flow analysis of a program, the result of
which becomes input to the termination analyzer (Sereni and Jones 2005; Sereni
2007). Once a call-graph is constructed, the so-called “size-change” principle8

8The size-change principle has enjoyed a complexity investigation in its own right (Lee et al. 2001;
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can be used to show that there is no infinite path of decreasing size through
through the program’s control graph, and therefore the program eventually pro-
duces an answer. This work has noted the inadequacies of 0CFA for producing
precise enough graphs for proving most interesting programs terminating. Mo-
tivated by more powerful termination analyses, these researchers have designed
more powerful (i.e., more precise) control flow analyses, dubbed k-limited CFA.
These analyses are parametrized by a fixed bound on the depth of environments,
like Shivers’ kCFA. So for example, in 1-limited CFA, each variable is mapped to
the program point in which it is bound, but no information is retained about this
value’s environment. But unlike kCFA, this “limited” analysis is not polyvariant
(context-sensitive) with respect to the most recent k calling contexts.

A lesson of our investigation into the complexity of kCFA is that it is not the poly-
variance that makes the analysis difficult to compute, but rather the environments.
Sereni notes that the k-limited CFA hierarchy “present[s] different characteristics,
in particular in the aspects of precision and complexity” (Sereni 2007), however
no complexity characterization is given.

6.10 Type Inference and Quantifier Elimination

Earlier work on the complexity of compile-time type inference is a precursor of the
research insights described here, and naturally so, since type inference is a kind
of static analysis (Mairson 1990; Henglein 1990; Henglein and Mairson 1991;
Mairson 2004). The decidability of type inference depends on the making of
approximations, necessarily rejecting programs without type errors; in simply-
typed λ-calculus, for instance, all occurrences of a variable must have the same
type. (The same is, in effect, also true for ML, modulo the finite development
implicit in let-bindings.) The type constraints on these multiple occurrences are
solved by first-order unification.

As a consequence, we can understand the inherent complexity of type inference by
analyzing the expressive power of linear terms, where no such constraints exist,
since linear terms are always simply-typable. In these cases, type inference is
synonymous with normalization.9 This observation motivates the analysis of type

Ben-Amram and Lee 2007).
9An aberrant case of this phenomenon is examined by Møller Neergaard and Mairson (2004),
which analyzed a type system where normalization and type inference are synonymous in every
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inference described by Mairson (1990, 2004).

Compared to flow analysis, type reconstruction has enjoyed a much more thor-
ough complexity analysis.

A key observation about the type inference problem for simply typed λ-terms is
that, when the term is linear (every bound variable occurs exactly once), the most
general type and normal form are isomorphic (Hindley 1989; Hirokawa 1991;
Henglein and Mairson 1991; Mairson 2004). So given a linear term in normal
form, we can construct its most general type (no surprise there), but conversely,
when given a most general type, we can construct the normal form of all terms
with that type.

This insight becomes the key ingredient in proving the lower bound complexity of
simple-type inference—when the program is linear, static analysis is effectively
“running” the program. Lower bounds, then, can be obtained by simply hacking
within the linear λ-calculus.

Aside: The normal form of a linear program can be “read back”
from its most general type in the following way: given a type σ1 →
σ2 → . . . → σk → α, where α is a type variable, we can con-
clude the normal form has the shape λx1.λx2. . . . λxk.e. Since the
term is linear, and the type is most general, every type variable oc-
curs exactly twice: once positively and once negatively. Furthermore,
there exists a unique σi ≡ τ1 → τ2 → . . . → τm → α, so xi

must be the head variable of the normal form, i.e., we now know:
λx1.λx2. . . . λxk.x1e

′, and xi is applied to m arguments, each with
type τ1, . . . , τm, respectively. But now, by induction, we can recur-
sively construct the normal forms of the arguments. The base case
occurs when we get to a base type (a type variable); here the term
is just the occurrence of the λ-bound variable that has this (unique)
type. In other words, a negative type-variable occurrence marks a
λ-binding, while the corresponding positive type-variable occurrence
marks the single occurrence of the bound variable. The rest of the
term structure is determined in a syntax-directed way by the arrow
structure of the type.

It has been known for a long time that type reconstruction for the simply typed

case. The tractability of type inference thus implied a certain inexpressiveness of the language.
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λ-calculus is decidable (Curry 1969; Hindley 1969), i.e. it is decidable whether a
term of the untyped λ-calculus is the image under type-erasing of a term of the
simply typed λ-calculus.10 Wand (1987) gave the first direct reduction to the uni-
fication problem (Herbrand 1930; Robinson 1965; Dwork et al. 1984; Kanellakis
et al. 1991). Henglein (1991, 1992) used unification to develop efficient type infer-
ence for binding time analysis and flow analysis, respectively. This work directly
inspired the widely influential Steensgaard (1996) algorithm.11

A lower bound on the complexity of type inference can often be leveraged by the
combinatorial power behind a quantifier elimination procedure (Mairson 1992a).
These procedures are syntactic transformations that map programs into potentially
larger programs that can been typed in a simpler, quantifier-free setting.

As an example, consider the case of ML polymorphism. The universal quantifi-
cation introduced by let-bound values can be eliminated by reducing all let-
redexes. The residual program is simply-typable if, and only if, the original pro-
gram is ML-typable.

This is embodied in the following inference rule:12

Γ `M : τ0 Γ ` [M/x]N : τ1

Γ ` let x = M in N : τ1

The residual may be exponentially larger due to nested let expressions that must
all be eliminated. From a Curry-Howard perspective, this can be seen as a form of
cut-elimination. From a computational perspective, this can be seen as a bounded
running of the program at compile time. From a software engineering perspective,
this can be seen as code-reuse—the ML-type inference problem has been reduced
to the simple-type inference problem, and thus to first-order unification. But the
price is that an exponential amount of work may now be required.

Full polymorphism is undecidable, but ML offers a limit form of outermost uni-
versal quantification. But this restriction relegates polymorphic functions to a
second-class citizenship, so in particular, functions passed as arguments to func-
tions (a staple of higher-order programming) can only be used monomorphically.
10See Tiuryn (1990) for a survey of type inference problems, cited in Cardone and Hindley (2006).
11See section 6.7 for more on the relation of pointer analysis and flow analysis.
12In the survey, Type systems for programming languages, Mitchell (1990) attributes this observa-

tion to Albert Meyer. Henglein and Mairson (1991, page 122) point out in a footnote that it also
appears in the thesis of Damas (1985), and is the subject of a question on the 1985 postgraduate
examination in computing at Edinburgh University.
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Intersection types restore first-class polymorphism by offering a finite form of
explicit quantification over simple types. The type τ1 ∧ τ2 is used for a term that
is typable as both τ1 and τ2. This can formalized as the following inference rule
for ∧:13

Γ1 `M : τ1 Γ2 `M : τ2

Γ1 ∧ Γ2 `M : τ1 ∧ τ2

where ∧ is lifted to environments in a straightforward way. Notice that this allows
expressions such as,

(λf.λz.z(f 2)(f false)) (λx.x),

to be typed where x has type int ∧ bool.

The inference rule, as stated, breaks syntax-directed inference. van Bakel (1992)
observed that by limiting the rule to the arguments of function application, syntax-
direction can be recovered without changing the set of typable terms (although
some terms will have fewer typings). Such systems are called strict intersections
since the ∧ can occur only on the left of a function type.

The finite ∧-quantifiers of strict intersections too have an elimination procedure,
which can be understood as a program transformation that eliminates ∧-quant-
ification by rank. A type is rank r if there are no occurrences of ∧ to the left of
r occurrences of an arrow. The highest rank intersections can be eliminated by
performing a minimal complete development.

Every strongly normalizing term has an intersection type, so type inference in
general is undecidable. However, decidable fragments can be regained by a stan-
dard approach of applying a rank restriction, limiting the depth of ∧ to the left of
a function type.

By bounding the rank, inference becomes decidable; if the rank is bound at k,
k developments suffice to eliminate all intersections. The residual program is
simply-typable if, and only if, the original program is rank-k intersection typable.
Since each development can cause the program to grow by an exponential factor,
iteratively performing k-MCD’s results in an elementary lower bound (Kfoury
et al. 1999; Møller Neergaard and Mairson 2004).

The special case of rank-2 intersection types have proved to be an important
case with applications to modular flow analysis, dead-code elimination, and typ-
13This presentation closely follows the informal presentation of intersection types in Chapter 4 of

Møller Neergaard (2004).
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ing polymorphic recursion, local definitions, conditionals and pattern matching
(Damiani and Prost 1998; Damiani 2003; Banerjee and Jensen 2003; Damiani
2007).

System F, the polymorphic typed λ-calculus (Reynolds 1974; Girard et al. 1989),
has an undecidable Curry-style inference problem (Wells 1999). Partial inference
in a Church-style system is investigated by Boehm (1985); Pfenning (1993) and
Pfenning’s result shows even partial inference for a simple predicative fragment
is undecidable.

The quantifier-elimination approach to proving lower bounds was extended to
System Fω by Henglein and Mairson (1991). They prove a sequence of lower
bounds on recognizing the System Fk-typable terms, where the bound for Fk+1 is
exponentially larger than that for Fk. This is analogous to intersection quantifier
elimination via complete developments at the term level. The essence of Henglein
and Mairson (1991) is to compute developments at the kind level to shift from Sys-
tem Fk+1 to System Fk typability. This technique led to lower bounds on System
Fi and the non-elementary bound on System Fω (Henglein and Mairson 1991).
Urzyczyn (1997) showed Curry-style inference for System Fω is undecidable.

There are some interesting open complexity problems in the realm of type in-
ference and quantifier elimination. Bounded polymorphic recursion has recently
been investigated (Comini et al. 2008), and is decidable but with unknown com-
plexity bounds, nor quantifier elimination procedures. Typed Scheme (Tobin-
Hochstadt and Felleisen 2008), uses explicit annotations, but with partial inference
and flow sensitivity. It includes intersection rules for function types. Complexity
bounds on type checking and partial inference are unknown.

The simple algorithm of Wand (1987), which generates constraints for type re-
construction, can also be seen as compiler for the linear λ-calculus. It compiles a
linear term into a “machine language” of first-order constraints of the form a = b
and c = d → e. This machine language is the computational analog of logic’s
own low-level machine language for first-order propositional logic, the machine-
oriented logic of Robinson (1965).

Unifying these constraints effectively runs the machine language, evaluating the
original program, producing an answer in the guise of a solved form of the type,
which is isomorphic to the normal form of the program.

Viewed from this perspective, this is an instance of normalization-by-evaluation
for the linear λ-calculus. A linear term is mapped into the domain of first-order
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logic, where unification is used to evaluate to a canonical solved form, which
can be mapped to the normal form of the term. Constraint-based formulations of
monovariant flow analyses analogously can be seen as instances of weak normal-
ization-by-evaluation functions for the linear λ-calculus.
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Chapter 7

Conclusions and Perspective

7.1 Contributions

Flow analysis is a fundamental static analysis of functional, object-oriented, and
other higher-order programming languages; it is a ubiquitous and much-studied
component of compiler technology with nearly thirty years of research on the
topic. This dissertation has investigated the computational complexity of flow
analysis in higher-order programming languages, yielding novel insights into the
fundamental limitations on the cost of performing flow analysis.

Monovariant flow analysis, such as 0CFA, is complete for polynomial time. More-
over, many further approximations to 0CFA from the literature, such as Henglein’s
simple closure analysis, remain complete for polynomial time. These theorems
rely on the fact that when a program is linear (each bound variable occurs exactly
once), the analysis makes no approximation; abstract and concrete interpretation
coincide. More generally, we conjecture any abstract and concrete interpretation
will have some sublanguage of coincidence, and this sublanguage may be useful
in proving lower bounds.

The linear λ-calculus has been identified as an important language subset to study
in order to understand flow analysis. Linearity is an equalizer among variants of
static analysis, and a powerful tool in proving lower bounds. Analysis of linear
programs coincide under both equality and inclusion-based flow constraints, and
moreover, concrete and abstract interpretation coincide for this core language. The
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inherently sequential nature of flow analysis can be understood as a consequence
of a lack of abstraction on this language subset.

Since linearity plays such a fruitful role in the study of program analysis, we
developed connections with linear logic and the technology of sharing graphs.
Monovariant analysis can be formulated graphically, and the technology of graph
reduction and optimal evaluation can be applied to flow analysis. The explicit
control representation of sharing graphs makes it easy to extend flow analysis to
languages with first-class control.

Simply-typed, η-expanded programs have a potentially simpler 0CFA problem,
which is complete for logarithmic space. This discovery is based on analogies
with proof normalization for multiplicative linear logic with atomic axioms.

Shivers’ polyvariant kCFA, for any k > 0, is complete for deterministic expo-
nential time. This theorem validates empirical observations that such control flow
analysis is intractable. A fairly straightforward calculation shows that kCFA can
be computed in exponential time. We show that the naive algorithm is essentially
the best one. There is, in the worst case—and plausibly, in practice—no way to
tame the cost of the analysis. Exponential time is required.

Collectively, these results provide general insight into the complexity of abstract
interpretation and program analysis.

7.2 Future Work

We end by outlining some new directions and open problems worth pursuing, in
approximately ascending order of ambition and import.

7.2.1 Completing the Pointer Analysis Complexity Story

Compared with flow analysis, pointer analysis has received a much more thor-
ough complexity investigation. A series of important refinements have been made
by Landi and Ryder (1991); Landi (1992a,b); Choi et al. (1993); Horwitz (1997);
Muth and Debray (2000); Chatterjee et al. (2001); Chakaravarthy (2003), yet open
problems persist. Chakaravarthy (2003) leaves open the lower bound on the com-
plexity of pointer analysis with well-defined types with less than two levels of
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dereference. We believe our insights into linearity and circuit construction can
lead to an answer to this remaining problem.

7.2.2 Polyvariant, Polynomial Flow Analyses

To echo the remark of Bravenboer and Smaragdakis (2009), only adapted to the
setting of flow analysis rather than pointer analysis, there is an ongoing search for
polyvariant, or context-sensitive, analyses that provide precise flow information
without causing massive redundant computation. There has been important work
in this area (Jagannathan and Weeks 1995; Nielson and Nielson 1997), but the
landscape of tractable, context-sensitive flow analyses is mostly open and in need
of development.

The ingredients, detailed in chapter 5, that combine to make kCFA hard, when
k > 0, should provide guidance in designing new abstractions that avoid com-
putationally expensive components of analysis. A lesson learned has been that
closures, as they exist when k > 0, result in an exponential value space that can
be harnessed for the EXPTIME lower-bound construction. It should be possible
to design alternative closure abstractions while remaining both polyvariant and
polynomial (more below).

7.2.3 An Expressive Hierarchy of Flow Analyses

From the perspective of computational complexity, the kCFA hierarchy is flat (for
any fixed k, kCFA is in EXPTIME; see section 5.2). On the other hand, there are
far more powerful analyses such as those of Burn et al. (1985) and Mossin (1998).
How can we systematically bridge the gap between these analyses to obtain a real
expressivity hierarchy?

Flow analyses based on rank-bounded intersection types offers one approach. It
should also be possible to design such analyses by composing notions of pre-
cise but bounded computation—such as partial evaluation or a series of complete
developments—followed by course analysis of residual programs. The idea is
to stage analysis into two phases: the first eliminates the need for polyvariance
in analysis by transforming the original program into an equivalent, potentially
larger, residual program. The subsequent stage performs a course (monovariant)
analysis of the residual program. By staging the analysis in this manner—first
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computing a precise but bounded program evaluation, then an imprecise eval-
uation approximation—the “ever-worsening feedback loop” (Might and Shivers
2006b) is avoided. By using a sufficiently powerful notion of bounded evalua-
tion, it should be possible to construct flow analyses that form a true hierarchy
from a complexity perspective. By using a sufficiently weak notion of bounded
evaluation, it should be possible to construct flow analyses that are arbitrarily
polyvariant, but computable in polynomial time.

7.2.4 Truly Subcubic Inclusion-Based Flow Analysis

This dissertation has focused on lower bounds, however recent upper bound im-
provements have been made on the “cubic bottleneck” of inclusion-based flow
analyses such as 0CFA (Midtgaard and Van Horn 2009). These results have shown
known set compression techniques can be applied to obtain direct 0CFA algo-
rithms that run in O(n3/ log n) time on a unit cost random-access memory model
machine. While these results do provide a logarithmic improvement, it is natu-
ral to wonder if there is a O(nc) algorithm for 0CFA and related analyses, where
c < 3.

At the same time, there have been recent algorithmic breakthroughs on the all-
pairs shortest path problem resulting in truly subcubic algorithms. Perhaps the
graphical formulation of flow analysis from chapter 4 can be adapted to exploit
these breakthroughs.

7.2.5 Toward a Fundamental Theorem of Static Analysis

A theorem due to Statman (1979) says this: let P be a property of simply-typed
λ-terms that we would like to detect by static analysis, where P is invariant un-
der reduction (normalization), and is computable in elementary time (polynomial,
or exponential, or doubly-exponential, or. . . ). Then P is a trivial property: for
any type τ , P is satisfied by all or none of the programs of type τ . Henglein
and Mairson (1991) have complemented these results, showing that if a property
is invariant under β-reduction for a class of programs that can encode all Turing
Machines solving problems of complexity class F using reductions from complex-
ity class G, then any superset is either F-complete or trivial. Simple typability has
this property for linear and linear affine λ-terms (Henglein and Mairson 1991;
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Mairson 2004), and these terms are sufficient to code all polynomial-time Turing
Machines.

We would like to prove some analogs of these theorems, with or without the typing
condition, but weakening the condition of “invariant under reduction” to “invariant
under abstract interpretation.”
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