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Abstract

We give exact characterizations of the computational complexity of the kCFA hierarchy and related

analyses. In each case, we precisely capture both the expressiveness and feasibility of the analysis,

identifying the elements responsible for the trade-off.

0CFA is complete for polynomial time. This result relies on the insight that when a program is

linear (each bound variable occurs exactly once), the analysis makes no approximation; abstract and

concrete interpretation coincide, and therefore program analysis becomes evaluation under another

guise. Moreover, this is true not only for 0CFA, but for a number of further approximations to 0CFA.

In each case, we derive polynomial time completeness results.

For any k > 0, kCFA is complete for exponential time. Even when k = 1, the distinction in binding

contexts results in a limited form of closures, which do not occur in 0CFA. This theorem validates

empirical observations that kCFA is intractably slow for any k > 0. There is, in the worst case, no way

to tame the cost of the analysis. Exponential time is required. The empirically observed intractability

of this analysis can be understood as being inherent in the approximation problem being solved,

rather than reflecting unfortunate gaps in our programming abilities.

1 Introduction

We analyze the computational complexity of flow analysis for higher-order languages,

yielding a number of novel insights: kCFA is provably intractable; 0CFA and its approx-

imations are inherently sequential; and analysis and evaluation of linear programs are

equivalent.

1.1 Overview

Semantics-based program analysis (Cousot & Cousot, 1977; Cousot & Cousot, 1992; Muchnick & Jones, 1981;

Nielson et al., 1999) aims to discover the run-time behavior of a program without actually

running it [page xv] (Muchnick & Jones, 1981). But as a natural consequence of Rice’s

theorem (1953), a perfect prediction is almost always impossible. So tractable program

analysis must necessarily trade exact evaluation for a safe, computable approximation to it.

This trade-off induces a fundamental dichotomy at play in the design of program analyzers

and optimizing compilers. On the one hand, the more an analyzer can discover about what

will happen when the program is run, the more optimizations the compiler can perform.

On the other, compilers are generally valued not only for producing fast code, but doing so



ZU064-05-FPR main 26 October 2009 21:4

2 D. Van Horn and H. G. Mairson

quickly and efficiently; some optimizations may be forfeited because the requisite analysis

is too difficult to do in a timely or space-efficient manner.

As an example in the extreme, if we place no limit on the resources consumed by the

compiler, it can perfectly predict the future—the compiler can simply simulate the running

of the program, watching as it goes. When (and if) the simulation completes, the compiler

can optimize with perfect information about what will happen when the program is run.

With good reason, this seems a bit like cheating.

So at a minimum, we typically expect a compiler will eventually finish working and

produce an optimized program. (In other words, we expect the compiler to compute within

bounded resources of time and space). After all, what good is an optimizing compiler that

never finishes?

But by requiring an analyzer to compute within bounded resources, we have necessarily

and implicitly limited its ability to predict the future.

As the analyzer works, it must use some form of approximation; knowledge must be

given up for the sake of computing within bounded resources. Further resource-efficiency

requirements may entail further curtailing of knowledge that a program analyzer can dis-

cover. But the relationship between approximation and efficiency is far from straightfor-

ward. Perhaps surprisingly, as has been observed empirically by researchers (Wright & Jagannathan, 1998;

Jagannathan et al., 1998; Might & Shivers, 2006b), added precision may avoid needless

computation induced by approximation in the analysis, resulting in computational savings—

that is, better information can often be produced faster than poorer information. So what

exactly is the analytic relationship between forfeited information and resource usage for

any given design decision?

In trading exact evaluation for a safe, computable approximation to it, analysis negoti-

ates a compromise between complexity and precision. But what exactly are the trade-offs

involved in this negotiation? For any given design decision, what is given up and what is

gained? What makes an analysis rich and expressive? What makes an analysis fast and

resource-efficient?

We examine these questions in the setting of flow analysis (Jones, 1981; Sestoft, 1988;

Sestoft, 1989; Shivers, 1988; Shivers, 1991; Midtgaard, 2007), a fundamental and ubiqui-

tous static analysis for higher-order programming languages. It forms the basis of almost

all other analyses and is a much-studied component of compiler technology.

Flow analysis answers basic questions such as “what functions can be applied?,” and

“to what arguments?” These questions specify well-defined, significant decision problems,

quite apart from any algorithm proposed to solve them. This paper examines the inherent

computational difficulty of deciding these problems.

If we consider the most useful analysis the one which yields complete and perfectly ac-

curate information about the running of a program, then clearly this analysis is intractable—

it consumes the same computational resources as running the program. At the other end

of the spectrum, if the least useful analysis yields no information about the running of a

program, then this analysis is surely feasible, but useless.

If the design of software is really a science, we have to understand the trade-offs between

the running time of static analyzers, and the accuracy of their computations.

There is substantial empirical experience, which gives a partial answer to these ques-

tions. However, despite being the fundamental analysis of higher-order programs, despite
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being the subject of investigation for over twenty-five years, and the great deal of expended

effort deriving clever ways to tame the cost, there has remained a poverty of analytic

knowledge on the complexity of flow analysis, the essence of how it is computed, and

where the sources of approximation occur that make the analysis work.

This paper is intended to repair such lacunae in our understanding.

1.2 Summary of Results

1.2.1 Linearity, Analysis and Normalization

• Normalization and analysis are equivalent for linear programs.

Although variants of flow analysis abound, we identify a core language, the linear λ -

calculus, for which all of these variations coincide. In other words, for linear programs—

those written to use each bound variable exactly once—all known flow analyses will

produce equivalent information.

It is straightforward to observe that in a linear λ -term, each abstraction λ x.e can be

applied to at most one argument, and hence the abstracted value can be bound to at most

one argument. Generalizing this observation, analysis of a linear λ -term coincides exactly

with its evaluation. So not only are the varying analyses equivalent to each other on linear

terms, they are all equivalent to evaluation.

Linearity is an equalizer among variations of static analysis, and a powerful tool in

proving lower bounds.

1.2.2 Monovariance and PTIME

• 0CFA and other monovariant flow analyses are complete for PTIME.

By definition, a monovariant analysis (e.g. 0CFA), does not distinguish between oc-

currences of the same variable bound in different calling contexts. But the distinction is

needless for linear programs and analysis becomes evaluation under another name. This

opens the door to proving lower bounds on the complexity of the analysis by writing—to

the degree possible—computationally intensive, linear programs, which will be faithfully

executed by the analyzer rather than the interpreter.

We rely on a symmetric coding of Boolean logic in the linear λ -calculus to simulate

circuits and reduce the 0CFA decision problem to the canonical PTIME problem, the circuit

value problem. This shows, since the inclusion is well-known, that 0CFA is complete for

PTIME. Consequently, 0CFA is inherently sequential and there is no fast parallel algorithm

for 0CFA (unless PTIME = NC). Moreover, this remains true for a number of further

approximations to 0CFA.

The best known algorithms for computing 0CFA are often not practical for large pro-

grams. Nonetheless, information can be given up in the service of quickly computing a

necessarily less precise analysis. For example, by forfeiting 0CFA’s notion of directionality,

algorithms for Henglein’s simple closure analysis run in near linear time (Henglein, 1992).

Similarly, by explicitly bounding the number of passes the analyzer is allowed over the

program, as in Ashley and Dybvig’s sub-0CFA (Ashley & Dybvig, 1998), we can recover

running times that are linear in the size of the program. But the question remains: Can
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we do better? For example, is it possible to compute these less precise analyses in loga-

rithmic space? We show that without profound combinatorial breakthroughs (PTIME =

LOGSPACE), the answer is no. Simple closure analysis, sub-0CFA, and other analyses

that approximate or restrict 0CFA, require—and are therefore, like 0CFA, complete for—

polynomial time.

1.2.3 0CFA with η-Expansion and LOGSPACE

• 0CFA of typed, η-expanded programs is complete for LOGSPACE.

We identify a restricted class of functional programs whose 0CFA decision problem may

be simpler—namely, complete for LOGSPACE. Consider programs that are simply typed,

and where a variable in the function position or the argument position of an application

is fully η-expanded. This case—especially, but not only when the programs are linear—

strongly resembles multiplicative linear logic with atomic axioms.

We rely on the resemblance to bring recent results on the complexity of normalization

in linear logic to bear on the analysis of η-expanded programs resulting in a LOGSPACE-

complete variant of 0CFA.

1.2.4 kCFA and EXPTIME

• kCFA is complete for EXPTIME for all k > 0.

We give an exact characterization of the computational complexity of the kCFA hierar-

chy. For any k > 0, we prove that the control flow decision problem is complete for deter-

ministic exponential time. This theorem validates empirical observations that such control

flow analysis is intractable. It also provides more general insight into the complexity of

abstract interpretation.

A fairly straightforward calculation shows that kCFA can be computed in exponential

time. We show that the naive algorithm is essentially the best one. There is, in the worst

case—and plausibly, in practice—no way to tame the cost of the analysis. Exponential time

is required.

2 Monovariant Analysis and PTIME

The monovariant form of flow analysis defined over the pure λ -calculus has emerged as

a fundamental notion of flow analysis for higher-order languages, and some form of flow

analysis is used in most analyses for higher-order languages (Heintze & McAllester, 1997a).

In this chapter, we examine several of the most well-known variations of monovariant

flow analysis: Shivers’ 0CFA (1988), Henglein’s simple closure analysis (1992), Heintze

and McAllester’s subtransitive flow analysis (1997a), Ashley and Dybvig’s sub-0CFA (1998),

Mossin’s single source/use analysis (1998), and others.

In each case, evaluation and analysis are proved equivalent for the class of linear pro-

grams and a precise characterization of the computational complexity of the analysis,

namely PTIME-completeness, is given.
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2.1 The Approximation of Monovariance

To ensure tractability of any static analysis, there has to be an approximation of something,

where information is deliberately lost in the service of providing what is left in a reasonable

amount of time. A good example of what is lost during monovariant static analysis is that

the information gathered for each occurrence of a bound variable is merged. When variable

f occurs twice in function position with two different arguments,

( f v1) · · · ( f v2)

a monovariant flow analysis will blur which copy of the function is applied to which

argument. If a function λ z.e flows into f in this example, the analysis treats occurrences of

z in e as bound to both v1 and v2.

Shivers’ 0CFA is among the most well-known forms of monovariant flow analysis;

however, the best known algorithm for 0CFA requires nearly cubic time in proportion to

the size of the analyzed program.

It is natural to wonder whether it is possible to do better, avoiding this bottleneck, either

by improving the 0CFA algorithm in some clever way or by further approximation for the

sake of faster computation.

Consequently, several analyses have been designed to approximate 0CFA by trading

precision for faster computation. Henglein’s simple closure analysis, for example, forfeits

the notion of directionality in flows. Returning to the earlier example,

f (λ x.e′) · · · f (λ y.e′′)

simple closure analysis, like 0CFA, will blur λ x.e′ and λ y.e′′ as arguments to f , causing

z to be bound to both. But unlike 0CFA, a bidirectional analysis such as simple closure

analysis will identify two λ -terms with each other. That is, because both are arguments to

the same function, by the bi-directionality of the flows, λ x.e′ may flow out of λ y.e′′ and

vice versa.

Because of this further curtailing of information, simple closure analysis enjoys an “al-

most linear” time algorithm. But in making trade-offs between precision and complexity,

what has been given up and what has been gained? Where do these analyses differ and

where do they coincide?

We identify a core language—the linear λ -calculus—where 0CFA, simple closure anal-

ysis, and many other known approximations or restrictions to 0CFA are rendered identical.

Moreover, for this core language, analysis corresponds with (instrumented) evaluation. Be-

cause analysis faithfully captures evaluation, and because the linear λ -calculus is complete

for PTIME, we derive PTIME-completeness results for all of these analyses.

Proof of this lower bound relies on the insight that linearity of programs subverts the

approximation of analysis and renders it equivalent to evaluation. We establish a corre-

spondence between Henglein’s simple closure analysis and evaluation for linear terms.

In doing so, we derive sufficient conditions effectively characterizing not only simple

closure analysis, but many known flow analyses computable in less than cubic time, such

as Ashley and Dybvig’s sub-0CFA, Heintze and McAllester’s subtransitive flow analysis,

and Mossin’s single source/use analysis.
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By using a nonstandard, symmetric implementation of Boolean logic within the linear

lambda calculus, it is possible to simulate circuits at analysis-time, and as a consequence,

we prove that all of the above analyses are complete for PTIME. Any sub-polynomial

algorithm for these problems would require (unlikely) breakthrough results in complexity,

such as PTIME = LOGSPACE.

We may continue to wonder whether it is possible to do better, either by improving the

0CFA algorithm in some clever way or by further approximation for faster computation.

However these theorems demonstrate the limits of both avenues. 0CFA is inherently se-

quential, and so is any algorithm for it, no matter how clever. Designing a provably efficient

parallel algorithm for 0CFA is as hard as parallelizing all polynomial time computations.

On the other hand, further approximations, such as simple closure analysis and most other

variants of monovariant flow analysis, make no approximation on a linear program. This

means they too are inherently sequential and no easier to parallelize.

2.2 0CFA

Something interesting happens when k = 0. Notice in the application rule of the kCFA

abstract evaluator of ?? that environments are extended as ρ [x 7→ ⌈δℓ⌉k]. When k = 0,

⌈δℓ⌉0 = ε . All contour environments map to the empty contour, and therefore carry no

contextual information. As such, 0CFA is a “monovariant” analysis, analogous to simple-

type inference, which is a monovariant type analysis.

Since there is only one constant environment (the “everywhere ε” environment), envi-

ronments of ?? can be eliminated from the analysis altogether and the cache no longer

needs a contour argument. Likewise, the set of abstract values collapses from P(Term×

Env) into P(Term).

The result of 0CFA is an abstract cache that maps each program point (i.e., label) to a

set of lambda abstractions which potentially flow into this program point at run-time:

Ĉ : Lab→P(Term)

r̂ : Var→P(Term)

Ĉache = (Lab→P(Term))× (Var→P(Term))

Caches are extended using the notation Ĉ[ℓ 7→ s], and we write Ĉ[ℓ 7→+ s] to mean Ĉ[ℓ 7→

(s∪ Ĉ(ℓ))]. It is convenient to sometimes think of caches as mutable tables (as we do in the

algorithm below), so we abuse syntax, letting this notation mean both functional extension

and destructive update. It should be clear from context which is implied.

The Analysis: We present the specification of the analysis here in the style of Nielson,

Nielson, and Hankin (1999). Each subexpression is identified with a unique superscript

label ℓ, which marks that program point; Ĉ(ℓ) stores all possible values flowing to point

ℓ, r̂(x) stores all possible values flowing to the definition site of x. An acceptable 0CFA

analysis for an expression e is written Ĉ, r̂ |= e and derived according to the scheme given

in Figure 1.

The |= relation needs to be coinductively defined since verifying a judgment Ĉ, r̂ |= e

may obligate verification of Ĉ, r̂ |= e′ which in turn may require verification of Ĉ, r̂ |= e.
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Ĉ, r̂ |= xℓ iff r̂(x)⊆ Ĉ(ℓ)

Ĉ, r̂ |= (λx.e)ℓ iff λx.e ∈ Ĉ(ℓ)

Ĉ, r̂ |= (tℓ1 tℓ2)ℓ iff Ĉ, r̂ |= tℓ1 ∧ Ĉ, r̂ |= tℓ2 ∧

∀λx.tℓ0 ∈ Ĉ(ℓ1) :

Ĉ(ℓ2)⊆ r̂(x) ∧

Ĉ, r̂ |= tℓ0 ∧

Ĉ(ℓ0)⊆ Ĉ(ℓ)

Fig. 1. 0CFA abstract cache acceptability.

The above specification of acceptability, when read as a table, defines a functional, which

is monotonic, has a fixed point, and |= is defined coinductively as the greatest fixed point

of this functional.1

Writing Ĉ, r̂ |= tℓ means “the abstract cache contains all the flow information for program

fragment t at program point ℓ.” The goal is to determine the least cache solving these

constraints to obtain the most precise analysis. Caches are partially ordered with respect to

the program of interest:

Ĉ ⊑ Ĉ′ iff ∀ℓ : Ĉ(ℓ)⊆ Ĉ′(ℓ)

r̂ ⊑ r̂′ iff ∀x : r̂(x)⊆ r̂′(x)

These constraints can be thought of as an abstract evaluator— Ĉ, r̂ |= tℓ simply means

evaluate tℓ, which serves only to update an (initially empty) cache.

A 0JxℓK = Ĉ(ℓ)← r̂(x)

A 0J(λx.e)ℓK = Ĉ(ℓ)←{λx.e}

A 0J(t
ℓ1 tℓ2)ℓK = A 0Jt

ℓ1 K; A 0Jt
ℓ2 K;

for each λx.tℓ0 in Ĉ(ℓ1) do

r̂(x)← Ĉ(ℓ2);

A 0Jt
ℓ0K;

Ĉ(ℓ)← Ĉ(ℓ0)

Fig. 2. Abstract evaluator A0 for 0CFA, imperative style.

The abstract evaluator A 0J·K is iterated until the finite cache reaches a fixed point.

Fine Print: A single iteration of A 0JeK may in turn make a recursive call A 0JeK with no

change in the cache, so care must be taken to avoid looping. This amounts to appealing

to the coinductive hypothesis Ĉ, r̂ |= e in verifying Ĉ, r̂ |= e. However, we consider this

inessential detail, and it can safely be ignored for the purposes of obtaining our main results

in which this behavior is never triggered.

Since the cache size is polynomial in the program size, so is the running time, as the

cache is monotonic—values are put in, but never taken out. Thus the analysis and any

1 See Nielson, Nielson, and Hankin (1999) for details and a thorough discussion of coinduction in
specifying static analyses.
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decision problems answered by the analysis are clearly computable within polynomial

time.

Lemma 1

The control flow problem for 0CFA is contained in PTIME.

Proof

0CFA computes a binary relation over a fixed structure. The computation of the relation is

monotone: it begins as empty and is added to incrementally. Because the structure is finite,

a fixed point must be reached by this incremental computation. The binary relation can be

at most polynomial in size, and each increment is computed in polynomial time.

An Example: Consider the following program, which we will return to discuss further in

subsequent analyses:

((λ f .(( f 1 f 2)3(λ y.y4)5)6)7(λ x.x8)9)10

The least 0CFA is given by the following cache:

Ĉ(1)={λ x} Ĉ(6) ={λ x,λ y}

Ĉ(2)={λ x} Ĉ(7) ={λ f}

Ĉ(3)={λ x,λ y} Ĉ(8) ={λ x,λ y}

Ĉ(4)={λ y} Ĉ(9) ={λ x}

Ĉ(5)={λ y} Ĉ(10)={λ x,λ y}

r̂( f )={λ x}

r̂(x) ={λ x,λ y}

r̂(y) ={λ y}

where we write λ x as shorthand for λ x.x8, etc.

2.3 Henglein’s Simple Closure Analysis

Simple closure analysis follows from an observation by Henglein some 15 years ago “in

an influential though not often credited technical report” [page 4] (Midtgaard, 2007): he

noted that the standard control flow analysis can be computed in dramatically less time

by changing the specification of flow constraints to use equality rather than containment

(Henglein, 1992). The analysis bears a strong resemblance to simple-type inference—

analysis can be performed by emitting a system of equality constraints and then solving

them using unification, which can be computed in almost linear time with a union-find data

structure.

Consider a program with both ( f x) and ( f y) as subexpressions. Under 0CFA, whatever

flows into x and y will also flow into the formal parameter of all abstractions flowing into

f , but it is not necessarily true that whatever flows into x also flows into y and vice versa.

However, under simple closure analysis, this is the case. For this reason, flows in simple

closure analysis are said to be bidirectional.

The Analysis: The specification of the analysis is given in Figure 3.

The Algorithm: We write Ĉ[ℓ↔ ℓ′] to mean Ĉ[ℓ 7→+ Ĉ(ℓ′)][ℓ′ 7→+ Ĉ(ℓ)].
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Ĉ, r̂ |= xℓ iff r̂(x) = Ĉ(ℓ)

Ĉ, r̂ |= (λx.e)ℓ iff λx.e ∈ Ĉ(ℓ)

Ĉ, r̂ |= (tℓ1 tℓ2)ℓ iff Ĉ, r̂ |= tℓ1 ∧ Ĉ, r̂ |= tℓ2 ∧

∀λx.tℓ0 ∈ Ĉ(ℓ1) :

Ĉ(ℓ2) = r̂(x) ∧

Ĉ, r̂ |= tℓ0 ∧

Ĉ(ℓ0) = Ĉ(ℓ)

Fig. 3. Simple closure analysis abstract cache acceptability.

A 0JxℓK = Ĉ(ℓ)↔ r̂(x)

A 0J(λ x.e)ℓK = Ĉ(ℓ)← {λ x.e}

A 0J(t
ℓ1
1 t

ℓ2
2 )ℓK = A 0Jt

ℓ1
1 K; A 0Jt

ℓ2
2 K;

for each λ x.t
ℓ0
0 in Ĉ(ℓ1) do

r̂(x)↔ Ĉ(ℓ2);

A 0Jt
ℓ0
0 K;

Ĉ(ℓ)↔ Ĉ(ℓ0)

The abstract evaluator A 0J·K is iterated until a fixed point is reached.2 By similar reasoning

to that given for 0CFA, simple closure analysis is clearly computable within polynomial

time.

Lemma 2

The control flow problem for simple closure analysis is contained in PTIME.

An Example: Recall the example program of the previous section:

((λ f .(( f 1 f 2)3(λ y.y4)5)6)7(λ x.x8)9)10

Notice that λ x.x is applied to itself and then to λ y.y, so x will be bound to both λ x.x and

λ y.y, which induces an equality between these two terms. Consequently, everywhere that

0CFA was able to deduce a flow set of {λ x} or {λ y} will be replaced by {λ x,λ y} under a

simple closure analysis. The least simple closure analysis is given by the following cache

(new flows are underlined):

Ĉ(1)={λ x,λ y} Ĉ(6) ={λ x,λ y}

Ĉ(2)={λ x,λ y} Ĉ(7) ={λ f}

Ĉ(3)={λ x,λ y} Ĉ(8) ={λ x,λ y}

Ĉ(4)={λ y,λ x} Ĉ(9) ={λ x,λ y}

Ĉ(5)={λ y,λ x} Ĉ(10)={λ x,λ y}

r̂( f )={λ x,λ y}

r̂(x) ={λ x,λ y}

r̂(y) ={λ y,λ x}

2.4 Linearity: Analysis is Evaluation

It is straightforward to observe that in a linear λ -term, each abstraction λ x.e can be applied

to at most one argument, and hence the abstracted value can be bound to at most one

2 The fine print of subsection 2.2 applies as well.
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E ′ : Exp×Env ⇀ Val

E ′JxℓK[x 7→ v] = v

E ′J(λx.e)ℓKρ = 〈λx.e,ρ〉

E ′J(e1 e2)
ℓKρ = let 〈λx.e0,ρ

′〉= E ′Je1Kρ ↾ fv(e1) in

let v = E ′Je2Kρ ↾ fv(e2) in

E ′Je0Kρ ′[x 7→ v]

Fig. 4. Evaluator E ′.

argument.3 Generalizing this observation, analysis of a linear λ -term coincides exactly

with its evaluation. So not only are the analyses equivalent on linear terms, but they are

also synonymous with evaluation.

A natural and expressive class of such linear terms are the ones which implement Boolean

logic. When analyzing the coding of a Boolean circuit and its inputs, the Boolean output

will flow to a predetermined place in the (abstract) cache. By placing that value in an

appropriate context, we construct an instance of the control flow problem: a function f

flows to a call site a iff the Boolean output is True.

Since the circuit value problem (Ladner, 1975), which is complete for PTIME, can be

reduced to an instance of the 0CFA control flow problem, we conclude this control flow

problem is PTIME-hard. Further, as 0CFA can be computed in polynomial time, the control

flow problem for 0CFA is PTIME-complete.

One way to realize the computational potency of a static analysis is to subvert this loss of

information, making the analysis an exact computational tool. Lower bounds on the expres-

siveness of an analysis thus become exercises in hacking, armed with this newfound tool.

Clearly the more approximate the analysis, the less we have to work with, computationally

speaking, and the more we have to do to undermine the approximation. But a fundamental

technique has emerged in understanding expressivity in static analysis—linearity.

In this section, we show that when the program is linear—every bound variable occurs

exactly once—analysis and evaluation are synonymous.

First, we start by considering an alternative evaluator, given in Figure 4, which is slightly

modified from the one given in ??. Notice that this evaluator “tightens” the environment

in the case of an application, thus maintaining throughout evaluation that the domain of

the environment is exactly the set of free variables in the expression. When evaluating a

variable occurrence, there is only one mapping in the environment: the binding for this

variable. Likewise, when constructing a closure, the environment does not need to be

restricted: it already is.

This alternative evaluator E ′ will be useful in reasoning about linear programs, but it

should be clear that it is equivalent to the original, standard evaluator E of ??.

Lemma 3

E JeKρ ⇐⇒ E ′JeKρ , when dom(ρ) = fv(e).

3 Note that this observation is clearly untrue for the nonlinear λ -term (λ f . f (a( f b)))(λx.x), as x is
bound to b, and also to ab.
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In a linear program, each mapping in the environment corresponds to the single oc-

currence of a bound variable. So when evaluating an application, this tightening splits

the environment ρ into (ρ1,ρ2), where ρ1 closes the operator, ρ2 closes the operand, and

dom(ρ1)∩dom(ρ2) = /0.

Definition 1

Environment ρ linearly closes t (or 〈t,ρ〉 is a linear closure) iff t is linear, ρ closes t, and

for all x ∈ dom(ρ), x occurs exactly once (free) in t, ρ(x) is a linear closure, and for all

y ∈ dom(ρ),x does not occur (free or bound) in ρ(y). The size of a linear closure 〈t,ρ〉 is

defined as:

|t,ρ | = |t|+ |ρ |

|x| = 1

|(λ x.tℓ)| = 1 + |t|

|(tℓ1
1 t

ℓ2
2 )| = 1 + |t1|+ |t2|

|[x1 7→ c1, . . . ,xn 7→ cn]| = n +∑
i

|ci|

The following lemma states that evaluation of a linear closure cannot produce a larger

value. This is the environment-based analog to the easy observation that β -reduction strictly

decreases the size of a linear term.

Lemma 4

If ρ linearly closes t and E ′JtℓKρ = c, then |c| ≤ |t,ρ |.

Proof

Straightforward by induction on |t,ρ |, reasoning by case analysis on t. Observe that the

size strictly decreases in the application and variable case, and remains the same in the

abstraction case.

The function lab(·) is extended to closures and environments by taking the union of all

labels in the closure or in the range of the environment, respectively.

Definition 2

The set of labels in a given term, expression, environment, or closure is defined as follows:

lab(tℓ) = lab(t)∪{ℓ} lab(e1 e2) = lab(e1)∪ lab(e2)

lab(x) = {x} lab(λ x.e) = lab(e)∪{x}

lab(t,ρ) = lab(t)∪ lab(ρ) lab(ρ) =
⋃

x∈dom(ρ) lab(ρ(x))

Definition 3

A cache Ĉ, r̂ respects 〈t,ρ〉 (written Ĉ, r̂ ⊢ t,ρ) when,

1. ρ linearly closes t,

2. ∀x ∈ dom(ρ).ρ(x) = 〈t ′,ρ ′〉 ⇒ r̂(x) = {t ′} and Ĉ, r̂ ⊢ t ′,ρ ′,
3. ∀ℓ ∈ lab(t), Ĉ(ℓ) = /0, and

4. ∀x ∈ bv(t), r̂(x) = /0.

Clearly, /0 ⊢ t, /0 when t is closed and linear, i.e. t is a linear

Figure 5 gives a “cache-passing” functional algorithm for A 0J·K of subsection 2.3. It is

equivalent to the functional style abstract evaluator of ?? specialized by letting k = 0. We

now state and prove the main theorem of this section in terms of this abstract evaluator.
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A0 : Exp× Ĉache→ Ĉache

A 0JxℓK Ĉ, r̂ = Ĉ[ℓ 7→ r̂(x)], r̂

A 0J(λx.e)ℓK Ĉ, r̂ = Ĉ[ℓ 7→ {λx.e}], r̂

A 0J(t
ℓ1 tℓ2)ℓK Ĉ, r̂ = Ĉ3[ℓ 7→ Ĉ3(ℓ0)], r̂3, where

δ ′ = ⌈δℓ⌉k
Ĉ1, r̂1 = A 0Jt

ℓ1K Ĉ, r̂

Ĉ2, r̂2 = A 0Jt
ℓ2K Ĉ1, r̂1

Ĉ3, r̂3 =
⊔Ĉ2(ℓ)

λx.tℓ0

(
A 0Jt

ℓ0K Ĉ2, r̂2[x 7→ Ĉ2(ℓ2)]
)

Fig. 5. Abstract evaluator A0 for 0CFA, functional style.

Theorem 1

If Ĉ, r̂ ⊢ t,ρ , Ĉ(ℓ) = /0, ℓ /∈ lab(t,ρ), E ′JtℓKρ = 〈t ′,ρ ′〉, and A 0Jt
ℓKĈ, r̂ = Ĉ′, r̂′, then Ĉ′(ℓ) =

{t ′}, Ĉ′ ⊢ t ′,ρ ′, and Ĉ′, r̂′ |= tℓ.

An important consequence is noted in Corollary 1.

Proof

By induction on |t,ρ |, reasoning by case analysis on t.

• Case t ≡ x.

Since Ĉ ⊢ x,ρ and ρ linearly closes x, thus ρ = [x 7→ 〈t ′,ρ ′〉] and ρ ′ linearly closes

t ′. By definition,

E
′JxℓKρ = 〈t ′,ρ ′〉, and

A 0JxℓKĈ = Ĉ[x↔ ℓ].

Again since Ĉ ⊢ x,ρ , Ĉ(x) = {t ′}, with which the assumption Ĉ(ℓ) = /0 implies

Ĉ[x↔ ℓ](x) = Ĉ[x↔ ℓ](ℓ) = {t ′},

and therefore Ĉ[x↔ ℓ] |= xℓ. It remains to show that Ĉ[x↔ ℓ] ⊢ t ′,ρ ′. By definition,

Ĉ ⊢ t ′,ρ ′. Since x and ℓ do not occur in t ′,ρ ′ by linearity and assumption, respec-

tively, it follows that Ĉ[x 7→ ℓ] ⊢ t ′,ρ ′ and the case holds.

• Case t ≡ λ x.e0.

By definition,

E
′J(λ x.e0)

ℓKρ = 〈λ x.e0,ρ〉,

A 0J(λ x.e0)
ℓKĈ = Ĉ[ℓ 7→+ {λ x.e0}],

and by assumption Ĉ(ℓ)= /0, so Ĉ[ℓ 7→+ {λ x.e0}](ℓ)= {λ x.e0} and therefore Ĉ[ℓ 7→+

{λ x.e0}] |= (λ x.e0)
ℓ. By assumptions ℓ /∈ lab(λ x.e0,ρ) and Ĉ ⊢ λ x.e0,ρ , it follows

that Ĉ[ℓ 7→+ {λ x.e0}] ⊢ λ x.e0,ρ and the case holds.

• Case t ≡ t
ℓ1
1 t

ℓ2
2 . Let

E
′Jt1Kρ ↾ fv(tℓ1

1 ) = 〈v1,ρ1〉= 〈λ x.tℓ0
0 ,ρ1〉,

E
′Jt2Kρ ↾ fv(tℓ2

2 ) = 〈v2,ρ2〉,
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A 0Jt1KĈ = Ĉ1, and

A 0Jt2KĈ = Ĉ2.

Clearly, for i ∈ {1,2}, Ĉ ⊢ ti,ρ ↾ fv(ti) and

1 +∑
i

|tℓi
i ,ρ ↾ fv(tℓi

i )| = |(tℓ1
1 t

ℓ2
2 ),ρ |.

By induction, for i ∈ {1,2} : Ĉi(ℓi) = {vi}, Ĉi ⊢ 〈vi,ρi〉, and Ĉi |= t
ℓi
i . From this, it is

straightforward to observe that Ĉ1 = Ĉ∪ Ĉ′1 and Ĉ2 = Ĉ∪ Ĉ′2 where Ĉ′1 and Ĉ′2 are

disjoint. So let Ĉ3 = (Ĉ1∪ Ĉ2)[x↔ ℓ2]. It is clear that Ĉ3 |= t
ℓi
i . Furthermore,

Ĉ3 ⊢ t0,ρ1[x 7→ 〈v2,ρ2〉],

Ĉ3(ℓ0) = /0, and

ℓ0 /∈ lab(t0,ρ1[x 7→ 〈v2,ρ2〉]).

By Lemma 4, |vi,ρi| ≤ |ti,ρ ↾ fv(ti)|, therefore

|t0,ρ1[x 7→ 〈v2,ρ2〉]| < |(tℓ1
1 t

ℓ2
2 )|.

Let

E
′Jtℓ0

0 Kρ1[x 7→ 〈v2,ρ2〉] = 〈v′,ρ ′〉,

A 0Jt
ℓ0
0 KĈ3 = Ĉ4,

and by induction, Ĉ4(ℓ0) = {v′}, Ĉ4 ⊢ v′,ρ ′, and Ĉ4 |= v′. Finally, observe that

Ĉ4[ℓ↔ ℓ0](ℓ)= Ĉ4[ℓ↔ ℓ0](ℓ0)= {v′}, Ĉ4[ℓ↔ ℓ0]⊢ v′,ρ ′, and Ĉ4[ℓ↔ ℓ0] |=(tℓ1
1 t

ℓ2
2 )ℓ,

so the case holds.

We can now establish the correspondence between analysis and evaluation.

Corollary 1

If Ĉ is the simple closure analysis of a linear program tℓ, then E ′JtℓK /0 = 〈v,ρ ′〉 where

Ĉ(ℓ) = {v} and Ĉ ⊢ v,ρ ′.

By a simple replaying of the proof substituting the containment constraints of 0CFA for

the equality constraints of simple closure analysis, it is clear that the same correspondence

can be established, and therefore 0CFA and simple closure analysis are identical for linear

programs.

Corollary 2

If e is a linear program, then Ĉ is the simple closure analysis of e iff Ĉ is the 0CFA of e.

Discussion: Returning to our earlier question of the computationally potent ingredients in

a static analysis, we can now see that when the term is linear, whether flows are directional

and bidirectional is irrelevant. For these terms, simple closure analysis, 0CFA, and evalu-

ation are equivalent. And, as we will see, when an analysis is exact for linear terms, the

analysis will have a PTIME-hardness bound.
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2.5 Lower Bounds for Flow Analysis

There are at least two fundamental ways to reduce the complexity of analysis. One is

to compute more approximate answers, the other is to analyze a syntactically restricted

language.

We use linearity as the key ingredient in proving lower bounds on analysis. This shows

not only that simple closure analysis and other flow analyses are PTIME-complete, but

the result is rather robust in the face of analysis design based on syntactic restrictions.

This is because we are able to prove the lower bound via a highly restricted programming

language—the linear λ -calculus. So long as the subject language of an analysis includes

the linear λ -calculus, and is exact for this subset, the analysis must be at least PTIME-hard.

The decision problem answered by flow analysis, described in ??, is formulated for

monovariant analyses as follows:

Flow Analysis Problem: Given a closed expression e, a term v, and label ℓ, is v ∈ Ĉ(ℓ) in

the analysis of e?

Theorem 2

If analysis corresponds to evaluation on linear terms, it is PTIME-hard.

The proof is by reduction from the canonical PTIME-complete problem of circuit evalua-

tion (Ladner, 1975):

Circuit Value Problem: Given a Boolean circuit C of n inputs and one output, and truth

values~x = x1, . . . ,xn, is~x accepted by C?

An instance of the circuit value problem can be compiled, using only logarithmic space,

into an instance of the flow analysis problem. The circuit and its inputs are compiled into

a linear λ -term, which simulates C on~x via evaluation—it normalizes to true if C accepts

~x and false otherwise. But since the analysis faithfully captures evaluation of linear terms,

and our encoding is linear, the circuit can be simulated by flow analysis.

The encodings work like this: tt is the identity on pairs, and ff is the swap. Boolean

values are either 〈tt,ff〉 or 〈ff,tt〉, where the first component is the “real” value, and the

second component is the complement.

tt ≡ λ p.let 〈x,y〉= p in 〈x,y〉 True ≡ 〈tt,ff〉

ff ≡ λ p.let 〈x,y〉= p in 〈y,x〉 False ≡ 〈ff,tt〉

The simplest connective is Not, which is an inversion on pairs, like ff. A linear copy

connective is defined as:

Copy ≡ λ b.let 〈u,v〉= b in 〈u〈tt,ff〉,v〈ff,tt〉〉.

The coding is easily explained: suppose b is True, then u is identity and v twists; so we

get the pair 〈True,True〉. Suppose b is False, then u twists and v is identity; we get

〈False,False〉. We write Copyn to mean n-ary fan-out—a straightforward extension of

the above.
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The And connective is defined as follows:

And ≡ λ b1.λ b2.

let 〈u1,v1〉= b1 in

let 〈u2,v2〉= b2 in

let 〈p1, p2〉= u1〈u2,ff〉 in

let 〈q1,q2〉= v1〈tt,v2〉 in

〈p1,q1 ◦ p2 ◦ q2 ◦ff〉.

Conjunction works by computing pairs 〈p1, p2〉 and 〈q1,q2〉. The former is the usual

conjunction on the first components of the Booleans b1,b2: u1〈u2,ff〉 can be read as “if u1

then u2, otherwise false (ff).” The latter is (exploiting De Morgan duality) the disjunction

of the complement components of the Booleans: v1〈tt,v2〉 is read as “if v1 (i.e. if not u1)

then true (tt), otherwise v2 (i.e. not u2).” The result of the computation is equal to 〈p1,q1〉,

but this leaves p2,q2 unused, which would violate linearity. However, there is symmetry

to this garbage, which allows for its disposal. Notice that, while we do not know whether

p2 is tt or ff and similarly for q2, we do know that one of them is tt while the other

is ff. Composing the two together, we are guaranteed that p2 ◦ q2 = ff. Composing this

again with another twist (ff) results in the identity function p2 ◦ q2 ◦ ff = tt. Finally,

composing this with q1 is just equal to q1, so 〈p1,q1 ◦ p2 ◦q2 ◦ff〉= 〈p1,q1〉, which is the

desired result, but the symmetric garbage has been annihilated, maintaining linearity.

Similarly, we define truth-table implication:

Implies ≡ λ b1.λ b2.

let 〈u1,v1〉= b1 in

let 〈u2,v2〉= b2 in

let 〈p1, p2〉= u1〈u2,tt〉 in

let 〈q1,q2〉= v1〈ff,v2〉 in

〈p1,q1 ◦ p2 ◦ q2 ◦ff〉

Let us work through the construction once more: Notice that if b1 is True, then u1 is tt,

so p1 is tt iff b2 is True. And if b1 is True, then v1 is ff, so q1 is ff iff b2 is False. On

the other hand, if b1 is False, u1 is ff, so p1 is tt, and v1 is tt, so q1 is ff. Therefore

〈p1,q1〉 is True iff b1 ⊃ b2, and False otherwise. Or, if you prefer, u1〈u2,tt〉 can be read

as “if u1, then u2 else tt”—the if-then-else description of the implication u1 ⊃ u2 —and

v1〈ff,v2〉 as its De Morgan dual ¬(v2 ⊃ v1). Thus 〈p1,q1〉 is the answer we want—and we

need only dispense with the “garbage” p2 and q2. De Morgan duality ensures that one is

tt, and the other is ff (though we do not know which), so they always compose to ff.

However, simply returning 〈p1,q1〉 violates linearity since p2,q2 go unused. We know

that p2 = tt iff q2 = ff and p2 = ff iff q2 = tt. We do not know which is which, but

clearly p2 ◦q2 = ff◦tt= tt◦ff= ff. Composing p2 ◦q2 with ff, we are guaranteed to

get tt. Therefore q1 ◦ p2 ◦q2◦ff= q1, and we have used all bound variables exactly once.

This hacking, with its self-annihilating garbage, is an improvement over that given by

Mairson (2004) and allows Boolean computation without K-redexes, making the lower

bound stronger, but also preserving all flows. In addition, it is the best way to do circuit

computation in multiplicative linear logic, and is how you compute similarly in non-affine

typed λ -calculus (Mairson, 2006b).
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e1 e2 e3 e4 e5 e6

e7 e8

f

e9 e10

e11 e12

o
Fig. 6. An example circuit.

By writing continuation-passing style variants of the logic gates, we can encode circuits

that look like straight-line code. For example, define CPS logic gates as follows:

Andgate ≡ λ b1.λ b2.λ k.k(And b1 b2)

Orgate ≡ λ b1.λ b2.λ k.k(Or b1 b2)

Impliesgate ≡ λ b1.λ b2.λ k.k(Implies b1 b2)

Notgate ≡ λ b.λ k.k(Not b)

Copygate ≡ λ b.λ k.k(Copy b)

Continuation-passing style code such as Andgate b1 b2 (λ r.e) can be read colloquially

as a kind of low-level, straight-line assembly language: “compute the And of registers b1

and b2, write the result into register r, and goto e.”

An example circuit is given in Figure 6, which can be encoded as:

Circuit ≡ λ e1.λ e2.λ e3λ e4.λ e5.λ e6.

Andgate e2 e3 (λ e7.

Andgate e4 e5 (λ e8.

Copygate f (λ e9.λ e10.

Orgate e1 e9 (λ e11.

Orgate e10 e6 (λ e12.

Orgate e11 e12 (λ o.o))))))

Notice that each variable in this CPS encoding corresponds to a wire in the circuit.

The above code says:

• compute the And of e2 and e3, putting the result in register e7,

• compute the And of e4 and e5, putting the result in register e8,

• compute the And of e7 and e8, putting the result in register f ,
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• make two copies of register f , putting the values in registers e9 and e10,

• compute the Or of e1 and e9, putting the result in register e11,

• compute the Or of e10 and e6, putting the result in register e12,

• compute the Or of e11 and e12, putting the result in the o (“output”) register.

We know from corollary 1 that evaluation and analysis of linear programs are synony-

mous, and our encoding of circuits will faithfully simulate a given circuit on its inputs,

evaluating to true iff the circuit accepts its inputs. But it does not immediately follow that

the circuit value problem can be reduced to the flow analysis problem. Let ||C,~x|| be the

encoding of the circuit and its inputs. It is tempting to think the instance of the flow analysis

problem could be stated:

is True in Ĉ(ℓ) in the analysis of ||C,~x||ℓ?

The problem with this is there may be many syntactic instances of “True.” Since the flow

analysis problem must ask about a particular one, this reduction will not work. The fix is to

use a context which expects a Boolean expression and induces a particular flow (that can

be asked about in the flow analysis problem) iff that expression evaluates to a true value.

We use The Widget to this effect. It is a term expecting a Boolean value. It evaluates as

though it were the identity function on Booleans, Widget b = b, but it induces a specific

flow we can ask about. If a true value flows out of b, then TrueW flows out of Widget b.

If a false value flows out of b, then FalseW flows out of Widget b, where TrueW and

FalseW are distinguished terms, and the only possible terms that can flow out. We usually

drop the subscripts and say “does True flow out of Widget b?” without much ado.

Widget ≡ λ b.

let 〈u,v〉= b in

let 〈x,y〉= u〈 f ,g〉 in

let 〈x′,y′〉= u′〈 f ′,g′〉 in

〈〈xa,yn〉,〈x′a′,y′b′〉〉

Because the circuit value problem is complete for PTIME, we conclude:

Theorem 3

The control flow problem for 0CFA is complete for PTIME.

Corollary 3

The control flow problem for simple closure analysis is complete for PTIME.

2.6 Other Monovariant Analyses

In this section, we survey some of the existing monovariant analyses that either approxi-

mate or restrict 0CFA to obtain faster analysis times. In each case, we sketch why these

analyses are complete for PTIME.

Shivers (2004) noted in his retrospective on control flow analysis that “in the ensuing

years [since 1988], researchers have expended a great deal of effort deriving clever ways

to tame the cost of the analysis.” Such an effort prompts a fundamental question: to what

extent is this possible?
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Algorithms to compute 0CFA were long believed to be at least cubic in the size of

the program, proving impractical for the analysis of large programs, and Heintze and

McAllester (1997c) provided strong evidence to suggest that in general, this could not

be improved. They reduced the problem of computing 0CFA to that of deciding two-way

nondeterministic push-down automata acceptance (2NPDA); a problem whose best known

algorithm was cubic and had remained so since its discovery (Aho et al., 1968)—or so it

was believed; see section 8 for a discussion.

In the face of this likely insurmountable bottleneck, researchers derived ways of further

approximating 0CFA, thereby giving up information in the service of quickly computing a

necessarily less precise analysis in order to avoid the “cubic bottleneck.”

Such further approximations enjoy linear or near linear algorithms and have become

widely used for the analysis of large programs where the more precise 0CFA would be

to expensive to compute. But it is natural to wonder if the algorithms for these simpler

analyses could be improved. Owing to 0CFA’s PTIME-lower bound, its algorithms are

unlikely to be effectively parallelized or made memory efficient. But what about these

other analyses?

2.6.1 Ashley and Dybvig’s Sub-0CFA

(Ashley & Dybvig, 1998) developed a general framework for specifying and computing

flow analyses; instantiations of the framework include 0CFA and the polynomial 1CFA of

(Jagannathan & Weeks, 1995), for example. They also developed a class of instantiations,

dubbed sub-0CFA, that are faster to compute, but less accurate than 0CFA.

This analysis works by explicitly bounding the number of times the cache can be updated

for any given program point. After this threshold has been crossed, the cache is updated

with a distinguished unknown value that represents all possible λ -abstractions in the pro-

gram. Bounding the number of updates to the cache for any given location effectively

bounds the number of passes over the program an analyzer must make, producing an

analysis that is O(n) in the size of the program. Empirically, Ashley and Dybvig observe

that setting the bound to 1 yields an inexpensive analysis with no significant difference in

enabling optimizations with respect to 0CFA.

The idea is the cache gets updated once (n times in general) before giving up and saying

all λ -abstractions flow out of this point. But for a linear term, the cache is only updated at

most once for each program point. Thus we conclude even when the sub-0CFA bound is 1,

the problem is PTIME-complete.

As Ashley and Dybvig note, for any given program, there exists an analysis in the sub-

0CFA class that is identical to 0CFA (namely by setting n to the number of passes 0CFA

makes over the given program). We can further clarify this relationship by noting that for

all linear programs, all analyses in the sub-0CFA class are identical to 0CFA (and thus

simple closure analysis).

2.6.2 Subtransitive 0CFA

(Heintze & McAllester, 1997c) have shown the “cubic bottleneck” of computing full 0CFA—

that is, computing all the flows in a program—cannot be avoided in general without combi-
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natorial breakthroughs: the problem is 2NPDA-hard, for which the “the cubic time decision

procedure [. . . ] has not been improved since its discovery in 1968.”

Forty years later, that decision procedure was improved to be slightly subcubic by (Chaudhuri, 2008).

However, given the strong evidence at the time that the situation was unlikely to improve

in general, (Heintze & McAllester, 1997a) identified several simpler flow questions4 and

designed algorithms to answer them for simply-typed programs. Under certain typing

conditions, namely that the type is within a bounded size, these algorithms compute in

less than cubic time.

The algorithm constructs a graph structure and runs in time linear in a program’s graph.

The graph, in turn, is bounded by the size of the program’s type. Thus, bounding the size

of a program’s type results in a linear bound on the running times of these algorithms.

If this type bound is removed, though, it is clear that even these simplified flow problems

(and their bidirectional-flow analogs), are complete for PTIME: observe that every linear

term is simply typable, however in our lower bound construction, the type size is propor-

tional to the size of the circuit being simulated. As they point out, when type size is not

bounded, the flow graph may be exponentially larger than the program, in which case the

standard cubic algorithm is preferred.

Independently, (Mossin, 1998) developed a type-based analysis that, under the assump-

tion of a constant bound on the size of a program’s type, can answer restricted flow

questions such as single source/use in linear time with respect to the size of the explicitly

typed program. But again, removing this imposed bound results in PTIME-completeness.

As (Hankin et al., 2002) point out: both Heintze and McAllester’s and Mossin’s algo-

rithms operate on type structure (or structure isomorphic to type structure), but with either

implicit or explicit η-expansion. For simply-typed terms, this can result in an exponential

blow-up in type size. It is not surprising then, that given a much richer graph structure, the

analysis can be computed quickly.

In this light, the results of section 3 on 0CFA of η-expanded, simply-typed programs

can be seen as an improvement of the subtransitive flow analysis since it works equally

well for languages with first-class control and can be performed with only a fixed number

of pointers into the program structure, i.e. it is computable in LOGSPACE (and in other

words, PTIME = LOGSPACE up to η).

2.7 Conclusions

When an analysis is exact, it will be possible to establish a correspondence with evaluation.

The richer the language for which analysis is exact, the harder it will be to compute the

analysis. As an example in the extreme, (Mossin, 1997a) developed a flow analysis that

is exact for simply-typed terms. The computational resources that may be expended to

compute this analysis are ipso facto not bounded by any elementary recursive function

(Statman, 1979). However, most flow analyses do not approach this kind of expressivity.

By way of comparison, 0CFA only captures PTIME, and yet researchers have still expend-

ing a great deal of effort deriving approximations to 0CFA that are faster to compute. But

4 Including the decision problem discussed in this dissertation, which is the simplest; answers to
any of the other questions imply an answer to this problem
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as we have shown for a number of them, they all coincide on linear terms, and so they too

capture PTIME.

We should be clear about what is being said, and not said. There is a considerable dif-

ference in practice between linear algorithms (nominally considered efficient) and cubic—

or near cubic—algorithms (still feasible, but taxing for large inputs), even though both

are polynomial-time. PTIME-completeness does not distinguish the two. But if a sub-

polynomial (e.g., LOGSPACE) algorithm was found for this sort of flow analysis, it would

depend on (or lead to) things we do not know (LOGSPACE = PTIME).

Likewise, were a parallel implementation of this flow analysis to run in logarithmic time

(i.e., NC), we would consequently be able to parallelize every polynomial time algorithm.

PTIME-complete problems are considered to be the least likely to be in NC. This is because

logarithmic-space reductions (such as our compiler from circuits to λ -terms) preserve

parallel complexity, and so by composing this reduction with a (hypothetical) logarithmic-

time 0CFA analyzer (or equivalently, a logarithmic-time linear λ -calculus evaluator) would

yield a fast parallel algorithm for all problems in PTIME, which are by definition, logspace-

reducible to the circuit value problem [page 377] (Papadimitriou, 1994).

The practical consequences of the PTIME-hardness result is that we can conclude any

analysis which is exact for linear programs, which includes 0CFA, and many further ap-

proximations, does not have a fast parallel algorithm unless PTIME = NC.

3 Linear Logic and Static Analysis

If you want to understand exactly how and where static analysis is computationally diffi-

cult, you need to know about linearity. In this chapter, we develop an alternative, graphical

representation of programs that makes explicit both non-linearity and control, and is suit-

able for static analysis.

This alternative representation offers the following benefits:

• It provides clear intuitions on the essence of 0CFA and forms the basis for a transpar-

ent proof of the correspondence between 0CFA and evaluation for linear programs.

• As a consequence of symmetries in the notation, it is equally well-suited for repre-

senting programs with first-class control.

• It based on the technology of linear logic. Insights gleaned from linear logic, viewed

through the lens of a Curry-Howard correspondence, can inform program analysis

and vice versa.

• As an application of the above, a novel and efficient algorithm for analyzing typed

programs (subsection 3.4) is derived from recent results on the efficient normaliza-

tion of linear logic proofs.

We give a reformulation of 0CFA in this setting and then transparently reprove the main

result of subsection 2.4: analysis and evaluation are synonymous for linear programs.
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3.1 Sharing Graphs for Static Analysis

In general, the sharing graph of a term will consist of a distinguished root wire from which

the rest of the term’s graph “hangs.”

M

fv(M)

At the bottom of the graph, the dangling wires represent free variables and connect to

occurrences of the free variable within in term.

Graphs consist of ternary abstraction (λ ), apply (@), sharing (▽) nodes, and unary

weakening (⊙) nodes. Each node has a distinguished principal port. For unary nodes, this

is the only port. The ternary nodes have two auxiliary ports, distinguished as the white and

black ports.

• A variable occurrence is represented simply as a wire from the root to the free

occurrence of the variable.

x

x

• Given the graph for M, where x occurs free,

M

fv(M) \ {x} x
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the abstraction λ x.M is formed as,

λx.M, x ∈ fv(M)M

fv(M) \ {x}

λ

Supposing x does not occur in M, the weakening node (⊙) is used to “plug” the λ

variable wire.

λx.M, x /∈ fv(M)M

fv(M)

λ

⊙

• Given graphs for M and N,

M N

fv(M) fv(N),
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@ @ @@

λx

⇒cfa

λx λx

⇒cfa

λx

Fig. 7. CFA virtual wire propagation rules.

the application MN is formed as,

M N

@

MN

fv(N) \ fv(M)

fv(N) ∩ fv(M)

fv(M) \ fv(N)

.

An application node is introduced. The operator M is connected to the function port

and the operand N is connected to the argument port. The continuation wire becomes

the root wire for the application. Free variables shared between both M and N are

fanned out with sharing nodes.

3.2 Graphical 0CFA

We now describe an algorithm for performing control flow analysis that is based on the

graph coding of terms. The graphical formulation consists of generating a set of virtual

paths for a program graph. Virtual paths describe an approximation of the real paths that

will arise during program execution.

Figure 7 defines the virtual path propagation rules. Note that a wire can be identified by

its label or a variable name.5 The left hand rule states that a virtual wire is added from the

continuation wire to the body wire and from the variable wire to the argument wire of each

β -redex. The right hand rule states analogous wires are added to each virtual β -redex—an

apply and lambda node connected by a virtual path. There is a virtual path between two

wires ℓ and ℓ′, written ℓ ℓ′ in a CFA-graph iff:

1. ℓ≡ ℓ′.

5 We implicitly let ℓ range over both in the following definitions.
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λx

λy

10

1 2

4

5

3

8

9

6

7

Fig. 8. Graph coding and CFA graph of (λ f . f f (λ y.y))(λ x.x).

2. There is a virtual wire from ℓ to ℓ′.

3. ℓ connects to an auxiliary port and ℓ′ connects to the root port of a sharing node.

4. There is a virtual path from ℓ to ℓ′′ and from ℓ′′ and ℓ′.

Reachability: Some care must be taken to ensure leastness when propagating virtual

wires. In particular, wires are added only when there is a virtual path between a reachable

apply and a lambda node. An apply node is reachable if it is on the spine of the program,

i.e., if e = (· · · ((e0e1)
ℓ1e2)

ℓ2 · · ·en)
ℓn then the apply nodes with continuation wires labeled

ℓ1, . . . , ℓn are reachable, or it is on the spine of an expression with a virtual path from a

reachable apply node.

Reachability is usually explained as a known improvement to flow analysis; precision is

increased by avoiding parts of the program that cannot be reached (Ayers, 1993; Palsberg & Schwartzbach, 1995;

Biswas, 1997; Heintze & McAllester, 1997b; Midtgaard & Jensen, 2008; Midtgaard & Jensen, 2009).

But reachability can also be understood as an analysis analog to weak normalization.

Reachability says roughly: “don’t analyze under λ until the analysis determines it may

be applied.” On the other hand, weak normalization says: “don’t evaluate under λ until

the evaluator determines it is applied.” The analyzers of ?? implicitly include reachability

since they are based on a evaluation function that performs weak normalization.

The graph-based analysis can now be performed in the following way: construct the

CFA graph according to the rules in Figure 7, then define Ĉ(ℓ) as {(λ x.e)ℓ
′
| ℓ ℓ′} and

r̂(x) as {(λ x.e)ℓ | x ℓ}. It is easy to see that the algorithm constructs answers that satisfy

the acceptability relation specifying the analysis. Moreover, this algorithm constructs least

solutions according to the partial order given in ??.

Lemma 5

Ĉ′, r̂′ |= e implies Ĉ, r̂ ⊑ Ĉ′, r̂′ for Ĉ, r̂ constructed for e as described above.
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We now consider an example of use of the algorithm. Consider the labeled program:

((λ f .(( f 1 f 2)3(λ y.y4)5)6)7(λ x.x8)9)10

Figure 8 shows the graph coding of the program and the corresponding CFA graph. The

CFA graph is constructed by adding virtual wires 10 6 and f  9, induced by the actual

β -redex on wire 7. Adding the virtual path f  9 to the graph creates a virtual β -redex

via the route 1 f (through the sharing node), and f  9 (through the virtual wire). This

induces 3 8 and 8 2. There is now a virtual β -redex via 3 8 2 f  9, so wires

6 8 and 8 5 are added. This addition creates another virtual redex via 3 8 2 5,

which induces virtual wires 6 4 and 4 5. No further wires can be added, so the CFA

graph is complete. The resulting abstract cache gives:

Ĉ(1)={λ x} Ĉ(6) ={λ x,λ y}

Ĉ(2)={λ x} Ĉ(7) ={λ f}

Ĉ(3)={λ x,λ y} Ĉ(8) ={λ x,λ y}

Ĉ(4)={λ y} Ĉ(9) ={λ x}

Ĉ(5)={λ y} Ĉ(10)={λ x,λ y}

r̂( f )={λ x}

r̂(x) ={λ x,λ y}

r̂(y) ={λ y}

3.3 Multiplicative Linear Logic

The Curry-Howard isomorphism states a correspondence between logical systems and

computational calculi (Howard, 1980). The fundamental idea is that data types are the-

orems and typed programs are proofs of theorems.

It begins with the observation that an implication A→ B corresponds to a type of

functions from A to B, because inferring B from A→ B and A can be seen as applying the

first assumption to the second one—just like a function from A to B applied to an element

of A yields an element of B. [p. v] (Sørensen & Urzyczyn, 2006)

For the functional programmer, the most immediate correspondence is between proofs

in propositional intuitionistic logic and simply typed λ -terms. But the correspondence

extends considerably further.

Virtually all proof-related concepts can be interpreted in terms of computations, and

virtually all syntactic features of various lambda-calculi and similar systems can be

formulated in the language of proof theory.

In this section we want to develop the “proofs-as-programs” correspondence for linear

programs, an important class of programs to consider for lower bounds on program anal-

ysis. Because analysis and evaluation are synonymous for linear programs, insights from

proof evaluation can guide new algorithms for program analysis.

The correspondence between simply typed (nonlinear) terms and intuitionistic logic can

be seen by looking at the familiar typing rules:

VAR
Γ,x : A ⊢ x : A

ABS
Γ,x : A ⊢M : B

Γ ⊢ λ x.M : A→ B
APP

Γ ⊢M : A→ B Γ ⊢ N : A

Γ ⊢MN : B
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If you ignore the “proof terms” (i.e. the programs), you get intuitionsitic sequent calcu-

lus:

AX
Γ,A ⊢ A

→I
Γ,A ⊢ B

Γ ⊢ A→ B
→E

Γ ⊢ A→ B Γ ⊢ A

Γ ⊢ B

Likewise, linear programs have their own logical avatar, namely multiplicative linear

logic.

3.3.1 Proofs

Each atomic formula is given in two forms: positive (A) and negative (A⊥) and the linear

negation of A is A⊥ and vice versa. Negation is extended to compound formulae via De

Morgan laws:

(A⊗B)⊥ = A⊥OB⊥ (AOB)⊥ = A⊥⊗B⊥

A two sided sequent

A1, . . . ,An ⊢ B1, . . . ,Bm

is replaced by

⊢ A⊥1 , . . . ,A⊥n ,B1, . . . ,Bm

The interested reader is referred to (Girard, 1987) for more details on linear logic.

For each derivation in MLL, there is a proofnet, which abstracts away much of the

needless sequentialization of sequent derivations, “like the order of application of inde-

pendent logical rules: for example, there are many inessintailly different ways to obtain

⊢ A1OA2, . . .An−1OAn from ⊢ A1, . . .An, while there is only one proof net representing

all these derivations” (Di Cosmo et al., 2003). There is strong connection with calculus of

explicit substitutions (Di Cosmo et al., 2003).

The sequent rules of multiplicative linear logic (MLL) are given in Figure 9.

AX
A,A⊥

CUT
Γ,A A⊥,∆

Γ,∆
O

Γ,A,B

Γ,AOB
⊗

Γ,A ∆,B

Γ,∆,A⊗B

Fig. 9. MLL sequent rules.

3.3.2 Programs

These rules have an easy functional programming interpretation as the types of a linear

programming language (eg. linear ML), following the intuitions of the Curry-Howard

correspondence (Girard et al., 1989; Sørensen & Urzyczyn, 2006).6

6 For a more detailed discussion of the C.-H. correspondence between linear ML and MLL, see
(Mairson, 2004).
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(These are written in the more conventional (to functional programmers) two-sided

sequents, but just remember that A⊥ on the left is like A on the right).

x : A ⊢ x : A

Γ ⊢M : A ∆ ⊢ N : B

Γ,∆ ⊢ (M,N) : A⊗B

Γ,x : A ⊢M : B

Γ ⊢ λ x.M : A⊸ B

Γ ⊢M : A⊸ B ∆ ⊢ N : A

Γ,∆ ⊢MN : B

Γ ⊢M : A⊗B ∆,x : A,y : B ⊢ N : C

Γ,∆ ⊢ let 〈x,y〉= M in N : C

The AXIOM rule says that a variable can be viewed simultaneously as a continuation

(A⊥) or as an expression (A)—one man’s ceiling is another man’s floor. Thus we say “input

of type A” and “output of type A⊥” interchangeably, along with similar dualisms. We also

regard (A⊥)⊥ synonymous with A: for example, Int is an integer, and Int⊥ is a request

(need) for an integer, and if you need to need an integer—(Int⊥)⊥—then you have an

integer.

The CUT rule says that if you have two computations, one with an output of type A,

another with an input of type A, you can plug them together.

The ⊗-rule is about pairing: it says that if you have separate computations producing

outputs of types A and B respectively, you can combine the computations to produce a

paired output of type A⊗B. Alternatively, given two computations with A an output in

one, and B an input (equivalently, continuation B⊥ an output) in the other, they get paired

as a call site “waiting” for a function which produces an output of type B with an input of

type A. Thus ⊗ is both cons and function call (@).

The O-rule is the linear unpairing of this ⊗-formation. When a computation uses inputs

of types A and B, these can be combined as a single input pair, e.g., let (x,y)=p in....

Alternatively, when a computation has an input of type A (output of continuation of type

A⊥) and an output of type B, these can be combined to construct a function which inputs a

call site pair, and unpairs them appropriately. Thus O is both unpairing and λ .

3.4 η-Expansion and LOGSPACE

3.4.1 Atomic versus Non-Atomic Axioms

The above AXIOM rule does not make clear whether the formula A is an atomic type

variable or a more complex type formula. When a linear program only has atomic formulas

in the “axiom” position, then we can evaluate (normalize) it in logarithmic space. When

the program is not linear, we can similarly compute a 0CFA analysis in LOGSPACE.

Moreover, these problems are complete for LOGSPACE.

MLL proofs with non-atomic axioms can be easily converted to ones with atomic axioms

using the following transformation, analogous to η-expansion:

α⊗β ,α⊥Oβ⊥
⇒

α,α⊥ β ,β⊥

α⊗β ,α⊥,β⊥

α⊗β ,α⊥Oβ⊥
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σ

λx

λy

λx

σ σ ′⇒σ ′→ σ

λx

λy

λx

σ ′⇒ σσ ′→ σ

λx.ee′ ⇒ ⇒

σ ′→ σ

⇒ ⇒
λxλx λ z

λyλx

λ z

σ ′→ σ

e0(e1e2) ⇒ e0(λy.e1e2y) λx.C[λ z.x] ⇒ λx.λy.C[λ z.zy]

⇒ λx.λy.xy

λx.C[e(λy.xy)]λx.C[ex]λx.λy.ee′y

λx.x

σ ′ σ ′σ

Fig. 10. Expansion algorithm.

This transformation can increase the size of the proof. For example, in the circuit exam-

ples of the previous section (which are evidence for PTIME-completeness), η-expansion

causes an exponential increase in the number of proof rules used.7 A LOGSPACE evaluation

is then polynomial-time and -space in the original circuit description.

The program transformation corresponding to the above proof expansion is a version

of η-expansion: see Figure 10. The left hand expansion rule is simply η , dualized in the

unusual right hand rule. The right rule is written with the @ above the λ only to emphasis

its duality with the left rule. Although not shown in the graphs, but implied by the term

rewriting rules, an axiom may pass through any number of sharing nodes.

3.4.2 Proof Normalization with Non-Atomic Axioms: PTIME

A normalized linear program has no redexes. From the type of the program, one can

reconstruct—in a totally syntax-directed way—what the structure of the term is (Mairson, 2004).

It is only the position of the axioms that is not revealed. For example, both TT and FF

7 It is linear in the formulas used, whose length increases exponentially (not so if the formulas are
represented by directed acyclic graphs).
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from the above circuit example have type ’a * ’a -> ’a * ’a.8 From this type, we

can see that the term is a λ -abstraction, the parameter is unpaired—and then, are the two

components of type a repaired as before, or “twisted”? To twist or not to twist is what

distinguishes TT from FF.

An MLL proofnet is a graphical analogue of an MLL proof, where various sequen-

tialization in the proof is ignored. The proofnet consists of axiom, cut, ⊗, and O nodes

with various dangling edges corresponding to conclusions. Rules for proofnet formation

(Figure 11) follow the rules for sequent formation (Figure 9) almost identically.

⇒
axax

cut

Π

Γ A B

⇒
Π

Γ
O
AOB

A A⊥

Π′Π Π Π′

∆ ∆Γ ΓA A⊥

⇒

Π Π′

Γ A B ∆

⇒
Π Π′

⊗

∆Γ A⊗B

Π

Γ A B

⇒
Π

Γ
O
AOB

A A⊥

Π′Π Π Π′

∆ ∆Γ A A⊥

Π Π′

Γ A B ∆

⇒
Π Π′

⊗

∆Γ A⊗B

Γ

Fig. 11. MLL proofnets.

A binary axiom node has two dangling edges, typed A and A⊥. Given two disjoint

proofnets with dangling edges (conclusions) typed Γ,A and A⊥,∆, the edges typed A,A⊥

can be connected to a binary cut node, and the resulting connected proofnet has dangling

edges typed Γ,∆. Given a connected proofnet with dangling wires typed Γ,A,B, the edges

typed A,B can be connected to the two auxiliary port of a O node and the dangling edge

connected to the principal port will have type AOB. Finally, given two disjoint proofnets

with dangling edges typed Γ,A and ∆,B, the edges typed A,B can be connected to the two

auxiliary ports of a ternary ⊗ node; the principal port then has a dangling wire of type

A⊗B. The intuition is that ⊗ is pairing and O is linear unpairing.

The geometry of interaction (Girard, 1989; Gonthier et al., 1992)—the semantics of lin-

ear logic—and the notion of paths provide a way to calculate normal forms, and may be

viewed as the logician’s way of talking about static program analysis.9 To understand how

this analysis works, we need to have a graphical picture of what a linear functional program

looks like.

Without loss of generality, such a program has a type φ . Nodes in its graphical picture

are either λ or linear unpairing (O in MLL), or application/call site or linear pairing (⊗ in

MLL). We draw the graphical picture so that axioms are on top, and cuts (redexes, either

β -redexes or pair-unpair redexes) are on the bottom as shown in Figure 12.

Because the axioms all have atomic type, the graph has the following nice property:

8 The linear logic equivalent is (α⊥Oα⊥)O(α ⊗ α). The λ is represented by the outer O, the
unpairing by the inner O, and the consing by the ⊗.

9 See (Mairson, 2002) for an introduction to context semantics and normalization by static analysis
in the geometry of interaction.
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α⊥

· · ·

cut cut

ax ax

ψ ψ⊥ ρ ρ⊥φ

α α⊥αα⊥α

Fig. 12. MLL proofnet with atomic axioms.

Lemma 6

Begin at an axiom α and “descend” to a cut-link, saving in an (initially empty) stack

whether nodes are encountered on their left or right auxiliary port. Once a cut is reached,

“ascend” the accompanying structure, popping the stack and continuing left or right as

specified by the stack token. Then (1) the stack empties exactly when the next axiom α ′ is

reached, and (2) if the k-th node from the start traversed is a ⊗, the k-th node from the end

traversed is a O, and vice versa.

The path traced in the Lemma, using the stack, is geometry of interaction (GoI), also known

as static analysis. The correspondence between the k-th node from the start and end of the

traversal is precisely that between a call site (⊗) and a called function (O), or between a

cons (⊗) and a linear unpairing (O).

3.4.3 Proof Normalization with Atomic Axioms: LOGSPACE

A sketch of the “four finger” normalization algorithm: The stack height may be polyno-

mial, but we do not need the stack! Put fingers α,β on the axiom where the path begins,

and iterate over all possible choices of another two fingers α ′,β ′ at another axiom. Now

move β and β ′ towards the cut link, where if β encounters a node on the left (right), then

β ′ must move left (right) also. If α ′,β ′ were correctly placed initially, then when β arrives

at the cut link, it must be met by β ′. If β ′ isn’t there, or got stuck somehow, then α ′,β ′

were incorrectly placed, and we iterate to another placement and try again.

Lemma 7

Any path from axiom α to axiom α ′ traced by the stack algorithm of the previous lemma

is also traversed by the “four finger” normalization algorithm.

Normalization by static analysis is synonymous with traversing these paths. Because

these fingers can be stored in logarithmic space, we conclude (Terui, 2002; Mairson, 2006a;

Mairson, 2006b):

Theorem 4

Normalization of linear, simply-typed, and fully η-expanded functional programs is con-

tained in LOGSPACE.

That 0CFA is then contained in LOGSPACE is a casual byproduct of this theorem,

due to the following observation: if application site χ calls function φ , then the ⊗ and

O (synonymously, @ and λ ) denoting call site and function are in distinct trees connected

by a CUT link. As a consequence the 0CFA computation is a subcase of the four-finger

algorithm: traverse the two paths from the nodes to the cut link, checking that the paths are
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isomorphic, as described above. The full 0CFA calculation then iterates over all such pairs

of nodes.

Corollary 4

0CFA of linear, simply-typed, and fully η-expanded functional programs is contained in

LOGSPACE.

3.4.4 0CFA in LOGSPACE

Now let us remove the linearity constraint, while continuing to insist on full η-expansion

as described above, and simple typing. The normalization problem is no longer contained in

LOGSPACE, but rather non-elementary recursive, (Statman, 1979; Mairson, 1992b; Asperti & Mairson, 1998).

However, 0CFA remains contained in LOGSPACE, because it is now an approximation.

This result follows from the following observation:

Lemma 8

Suppose (tℓ e) occurs in a simply typed, fully η-expanded program and λ x.e ∈ Ĉ(ℓ). Then

the corresponding ⊗ and O occur in adjacent trees connected at their roots by a CUT-link

and on dual, isomorphic paths modulo placement of sharing nodes.

Here “modulo placement” means: follow the paths to the cut—then we encounter⊗ (resp.,

O) on one path when we encounter O (resp., ⊗) on the other, on the same (left, right)

auxiliary ports. We thus ignore traversal of sharing nodes on each path in judging whether

the paths are isomorphic. (Without sharing nodes, the ⊗ and O would annihilate—i.e., a

β -redex—during normalization.)

Theorem 5

0CFA of a simply-typed, fully η-expanded program is contained in LOGSPACE.

Observe that 0CFA defines an approximate form of normalization which is suggested

by simply ignoring where sharing occurs. Thus we may define the set of λ -terms to which

that a term might evaluate. Call this 0CFA-normalization.

Theorem 6

For fully η-expanded, simply-typed terms, 0CFA-normalization can be computed in non-

deterministic LOGSPACE.

Conjecture 1

For fully η-expanded, simply-typed terms, 0CFA-normalization is complete for nondeter-

ministic LOGSPACE.

The proof of the above conjecture likely depends on a coding of arbitrary directed graphs

and the consideration of commensurate path problems.

Conjecture 2

An algorithm for 0CFA normalization can be realized by optimal reduction, where sharing

nodes always duplicate, and never annihilate.
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3.4.5 LOGSPACE-hardness of Normalization and 0CFA: linear, simply-typed, fully

η-expanded programs

That the normalization and 0CFA problem for this class of programs is as hard as any

LOGSPACE problem follows from the LOGSPACE-hardness of the permutation problem:

given a permutation π on 1, . . . ,n and integer 1≤ i≤ n, are 1 and i on the same cycle in π?

That is, is there a k where 1≤ k≤ n and πk(1) = i?

Briefly, the LOGSPACE-hardness of the permutation problem is as follows.10 Given an

arbitrary LOGSPACE Turing machine M and an input x to it, visualize a graph where

the nodes are machine IDs, with directed edges connecting successive configurations.

Assume that M always accepts or rejects in unique configurations. Then the graph has

two connected components: the “accept” component, and the “reject” component. Each

component is a directed tree with edges pointing towards the root (final configuration).

Take an Euler tour around each component (like tracing the fingers on your hand) to derive

two cycles, and thus a permutation on machine IDs. Each cycle is polynomial size, because

the configurations only take logarithmic space. The equivalent permutation problem is

then: does the initial configuration and the accept configuration sit on the same cycle?

The following linear ML code describes the “target” code of a transformation of an

instance of the permutation problem. For a permutation on n letters, we take here an

example where n = 3. Begin with a vector of length n set to False, and a permutation

on n letters:

- val V= (False,False,False);

val V = ((fn,fn),(fn,fn),(fn,fn))

: ((’a * ’a -> ’a * ’a) * (’a * ’a -> ’a * ’a))

* ((’a * ’a -> ’a * ’a) * (’a * ’a -> ’a * ’a))

* ((’a * ’a -> ’a * ’a) * (’a * ’a -> ’a * ’a))

Denote as ν the type of vector V.

- fun Perm (P,Q,R)= (Q,R,P);

val Perm = fn : ν -> ν

The function Insert linearly inserts True in the first vector component, using all input

exactly once:

- fun Insert ((p,p’),Q,R)= ((TT,Compose(p,p’)),Q,R);

val Insert = fn : ν -> ν

The function Select linearly selects the third vector component:

- fun Select (P,Q,(r,r’))=

(Compose (r,Compose (Compose P, Compose Q)),r’);

val Select = fn

: ν -> ((’a * ’a -> ’a * ’a) * (’a * ’a -> ’a * ’a))

Because Perm and Insert have the same flat type, they can be composed iteratively in

ML without changing the type. (This clearly is not true in our coding of circuits, where

the size of the type increases with the circuit. A careful coding limits the type size to be

polynomial in the circuit size, regardless of circuit depth.)

10 This presentation closely follows (Mairson, 2006b).
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Fig. 13. Graph coding of call/cc and example CFA graph.

Lemma 9

Let π be coded as permutation Perm. Define Foo to be

Compose(Insert,Perm)

composed with itself n times. Then 1 and i are on the same cycle of π iff Select (Foo

V) normalizes to True.

Because 0CFA of a linear program is identical with normalization, we conclude:

Theorem 7

0CFA of a simply-typed, fully η-expanded program is complete for LOGSPACE.

The usefulness of η-expansion has been noted in the context of partial evaluation (Jones et al., 1993;

Danvy et al., 1996). In that setting, η-redexes serve to syntactically embed binding-time

coercions. In our case, the type-based η-expansion does the trick of placing the analysis in

LOGSPACE by embedding the type structure into the syntax of the program.11

3.5 Graphical Flow Analysis and Control

(Shivers, 2004) argues that “CPS provide[s] a uniform representation of control struc-

ture,” allowing “this machinery to be employed to reason about context, as well,” and that

“without CPS, separate contextual analyses and transforms must be also implemented—

redundantly,” in his view. Although our formulation of flow analysis is a “direct-style” for-

mulation, a graph representation enjoys the same benefits of a CPS representation, namely

that control structures are made explicit—in a graph a continuation is simply a wire.

Control constructs such as call/cc can be expressed directly (Lawall & Mairson, 2000)

and our graphical formulation of control flow analysis carries over without modification.

(Lawall & Mairson, 2000) derive graph representations of programs with control opera-

tors such as call/cc by first translating programs into continuation passing style (CPS).

They observed that when edges in the CPS graphs carrying answer values (of type ⊥) are

eliminated, the original (direct-style) graph is regained, modulo placement of boxes and

croissants that control sharing. Composing the two transformations results in a direct-style

graph coding for languages with call/cc (hereafter, λK ). The approach applies equally

well to languages such as Filinski’s symmetric λ -calculus (1989), Parigot’s λµ calculus

(1992), and most any language expressible in CPS.

Languages such as λξ , which contains the “delimited control” operators shift and reset

(Danvy & Filinski, 1990), are not immediately amenable to this approach since the direct-

style transformation requires all calls to functions or continuations be in tail position.

Adapting this approach to such languages constitutes an open area of research.

The left side of Figure 13 shows the graph coding of call/cc. Examining this graph, we

can read of an interpretation of call/cc, namely: call/cc is a function that when applied,

copies the current continuation (△) and applies the given function f to a function (λ v . . .)

11 Or, in slogan form: LOGSPACE = PTIME upto η .
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that when applied abandons the continuation at that point (⊙) and gives its argument v to a

copy of the continuation where call/cc was applied. If f never applies the function it is

given, then control returns “normally” and the value f returns is given to the other copy of

the continuation where call/cc was applied.

The right side of Figure 13 gives the CFA graph for the program:

(call/cc (λ k.(λ x.1)(k2)))ℓ

From the CFA graph we see that Ĉ(ℓ) = {1,2}, reflecting the fact that the program will

return 1 under a call-by-name reduction strategy and 2 under call-by-value. Thus, the anal-

ysis is indifferent to the reduction strategy. Note that whereas before, approximation was

introduced through nonlinearity of bound variables, approximation can now be introduced

via nonlinear use of continuations, as seen in the example. In the same way that 0CFA

considers all occurrences of a bound variable “the same”, 0CFA considers all continuations

obtained with each instance of call/cc “the same”.

Note that we can ask new kinds of interesting questions in this analysis. For example, in

Figure 13, we can compute which continuations are potentially discarded, by computing

which continuations flow into the weakening node of the call/cc term. (The answer

is the continuation ((λ x.1)[ ]).) Likewise, it is possible to ask which continuations are

potentially copied, by computing which continuations flow into the principal port of the

sharing node in the call/cc term (in this case, the top-level empty continuation [ ]).

Because continuations are used linearly in call/cc-free programs, the questions were

uninteresting before—the answer is always none.

Our proofs for the PTIME-completeness of 0CFA for the untyped λ -calculus carry

over without modification languages such as λK , λµ and the symmetric λ -calculus. In

other words, first-class control operators such as call/cc increase the expressivity of the

language, but add nothing to the computational complexity of control flow analysis. In the

case of simply-typed, fully η-expanded programs, the same can be said. A suitable notion

of “simply-typed” programs is needed, such as that provided by (Griffin, 1990) for λK .

The type-based expansion algorithm of Figure 10 applies without modification and lemma

8 holds, allowing 0CFA for this class of programs to be done in LOGSPACE. Linear logic

provides a foundation for (classical) λ -calculi with control; related logical insights allow

control flow analysis in this setting.

The graph coding of terms in our development is based on the technology of sharing

graphs in the untyped case, and proof nets in the typed case (Lafont, 1995). The tech-

nology of proofnets have previously been extended to intersection types (Regnier, 1992;

Møller Neergaard, 2004), which have a close connection to flow analysis (Amtoft & Turbak, 2000;

Palsberg & Pavlopoulou, 2001; Wells et al., 2002; Banerjee & Jensen, 2003).

The graph codings, CFA graphs, and virtual wire propagation rules share a strong re-

semblance to the “pre-flow” graphs, flow graphs, and graph “closing rules”, respectively,

of (Mossin, 1997b). Casting the analysis in this light leads to insights from linear logic

and optimal reduction. For example, as [page 78] (Mossin, 1997b) notes, the CFA virtual

paths computed by 0CFA are an approximation of the actual run-time paths and corre-

spond exactly to the “well-balanced paths” of (Asperti & Laneve, 1995) as an approxi-

mation to “legal paths” (Lévy, 1978) and results on proof normalization in linear logic

(Mairson & Terui, 2003) informed the novel flow analysis algorithms presented here.
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4 kCFA and EXPTIME

In this chapter, we give an exact characterization of the computational complexity of

the kCFA hierarchy. For any k > 0, we prove that the control flow decision problem is

complete for deterministic exponential time. This theorem validates empirical observations

that such control flow analysis is intractable. It also provides more general insight into the

complexity of abstract interpretation.

4.1 Shivers’ kCFA

As noted in subsection 1.1, practical flow analyses must negotiate a compromise between

complexity and precision, and their expressiveness can be characterized by the computa-

tional resources required to compute their results.

Examples of simple yet useful flow analyses include Shivers’ 0CFA (1988) and Hen-

glein’s simple closure analysis (1992), which are monovariant—functions that are closed

over the same λ -expression are identified. Their expressiveness is characterized by the

class PTIME (section 2).

As described in section 2, a monovariant analysis is one that approximates at points of

nonlinearity. When a variable appears multiple times, flow information is merged together

for all sites.

So for example, in analyzing the program from subsection 2.2,

(λ f .( f f )(λ y.y))(λ x.x),

a monovariant analysis such as 0CFA or simple closure analysis will merge the flow

information for the two occurrences of f . Consequently both λ x.x and λ y.y are deemed

to flow out of the whole expression.

More precise analyses can be obtained by incorporating context-sensitivity to distinguish

multiple closures over the same λ -term, resulting in “finer grained approximations, ex-

pending more work to gain more information” (Shivers, 1988; Shivers, 1991). This context-

sensitivity will allow the two occurrences of f to be analyzed independently. Consequently,

such an analysis will determine that only λ y.y flows out of the expression.

To put it another way, a context-sensitive analysis is capable of evaluating this program.

As a first approximation to understanding, the added precision of kCFA can be thought

of as the ability to do partial reductions before analysis. If were to first reduce all of the

apparent redexes in the program, and then do 0CFA on the residual, our example program

would look like

(λ x1.x1)(λ x2.x2)(λ y.y).

Being a linear program, 0CFA is sufficient to prove only λ y.y flows out of this residual.

The polyvariance of kCFA is powerful enough to prove the same, however it is important to

note that it is not done by a bounded reduction of the program. Instead, the kCFA hierarchy

uses the last k calling contexts to distinguish closures.

The increased precision comes with an empirically observed increase in cost. As Shivers

noted in his retrospective on the kCFA work (2004):
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It did not take long to discover that the basic analysis, for any k > 0, was intractably

slow for large programs. In the ensuing years, researchers have expended a great deal of

effort deriving clever ways to tame the cost of the analysis.

A fairly straightforward calculation—see, for example, (Nielson et al., 1999)—shows

that 0CFA can be computed in polynomial time, and for any k > 0, kCFA can be computed

in exponential time.

These naive upper bounds suggest that the kCFA hierarchy is essentially flat; researchers

subsequently “expended a great deal of effort” trying to improve them.12 For example, it

seemed plausible (at least, to us) that the kCFA problem could be in NPTIME by guessing

flows appropriately during analysis.

As this dissertation shows, the naive algorithm is essentially the best one, and the lower

bounds are what needed improving. We prove that for all k > 0, computing the kCFA analy-

sis requires (and is thus complete for) deterministic exponential time. There is, in the worst

case—and plausibly, in practice—no way to tame the cost of the analysis. Exponential time

is required.

Why should this result matter to functional programmers?

• This result concerns a fundamental and ubiquitous static analysis of functional pro-

grams.

The theorem gives an analytic, scientific characterization of the expressive power of

kCFA. As a consequence, the empirically observed intractability of the cost of this

analysis can be understood as being inherent in the approximation problem being

solved, rather than reflecting unfortunate gaps in our programming abilities.

Good science depends on having relevant theoretical understandings of what we

observe empirically in practice.

This connection between theory and experience contrasts with the similar result for

ML-type inference (Mairson, 1990): while the problem of recognizing ML-typable

terms is complete for exponential time, programmers have happily gone on program-

ming. It is likely that their need of higher-order procedures, essential for the lower

bound, is not considerable.13

But static flow analysis really has been costly, and this theorem explains why.

• The theorem is proved by functional programming.

We take the view that the analysis itself is a functional programming language, albeit

with implicit bounds on the available computational resources. Our result harnesses

the approximation inherent in kCFA as a computational tool to hack exponential

time Turing machines within this unconventional language. The hack used here is

completely unlike the one used for the ML analysis, which depended on complete

developments of let-redexes. The theorem we prove in this paper uses approxima-

tion in a way that has little to do with normalization.

12 Even so, there is a big difference between algorithms that run in 2n and 2n2

steps, though both are
nominally in EXPTIME.

13 (Kuan & MacQueen, 2007) have recently provided a refined perspective on the complexity of ML-
type inference that explains why it works so quickly in practice.
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We proceed by first bounding the complexity of kCFA from above, showing that kCFA

can be solved in exponential time (subsection 4.2). This is easy to calculate and is known

(Nielson et al., 1999). Next, we bound the complexity from below by using kCFA as a

SAT-solver. This shows kCFA is at least NPTIME-hard (subsection 4.3). The intuitions

developed in the NPTIME-hardness proof can be improved to construct a kind of exponen-

tial iterator. A small, elucidative example is developed in subsection 4.4. These ideas are

then scaled up and applied in subsection 4.5 to close the gap between the EXPTIME upper

bound and NPTIME lower bound by giving a construction to simulate Turing machines

for an exponential number of steps using kCFA, thus showing kCFA to be complete for

EXPTIME.

4.2 kCFA is in EXPTIME

Recall the definition of kCFA from ??. The cache, Ĉ, r̂, is a finite mapping and has nk+1

entries. Each entry contains a set of closures. The environment component of each closure

maps p free variables to any one of nk contours. There are n possible λ -terms and nkp

environments, so each entry contains at most n1+kp closures. Analysis is monotonic, and

there are at most n1+(k+1)p updates to the cache. Since p ≤ n, we conclude:

Lemma 10

The control flow problem for kCFA is contained in EXPTIME.

It is worth noting that this result shows, from a complexity perspective, the flatness

of the kCFA hierarchy: for any constant k, kCFA is decidable in exponential time. It is

not the case, for example, that 1CFA requires exponential time (for all j, DTIME(2n j
) ⊆

EXPTIME), while 2CFA requires doubly exponential time (for all j, DTIME(22n j

) ⊆

2EXPTIME), 3CFA requires triply exponential time, etc. There are strict separation results

for these classes, EXPTIME ⊂ 2EXPTIME ⊂ 3EXPTIME, etc., so we know from the

above lemma there is no need to go searching for lower bounds greater than EXPTIME.

4.3 kCFA is NPTIME-hard

Because kCFA makes approximations, many closures can flow to a single program point

and contour. In 1CFA, for example, λ w.wx1x2 · · ·xn has n free variables, with an exponen-

tial number of possible associated environments mapping these variables to program points

(contours of length 1). Approximation allows us to bind each xi, independently, to either of

the closed λ -terms for True or False that we saw in the PTIME-completeness proof for

0CFA. In turn, application to an n-ary Boolean function necessitates computation of all 2n

such bindings in order to compute the flow out from the application site. The term True

can only flow out if the Boolean function is satisfiable by some truth valuation. For an

appropriately chosen program point (label) ℓ, the cache location Ĉ(v, ℓ) will contain the set

of all possible closures which are approximated to flow to v. This set is that of all closures

〈(λ w.wx1x2 · · ·xn),ρ〉

where ρ ranges over all assignments of True and False to the free variables (or more

precisely assignments of locations in the table containing True and False to the free
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(λ f1.( f1 True)( f1 False))

(λx1.

(λ f2.( f2 True)( f2 False))

(λx2.

(λ f3.( f3 True)( f3 False))

(λx3.

· · ·

(λ fn.( fn True)( fn False))

(λxn.

C[(λv.φ v)(λw.wx1x2 · · ·xn)]) · · ·))))

Fig. 14. NPTIME-hard construction for kCFA.

variables). The Boolean function φ is completely linear, as in the PTIME-completeness

proof; the context C uses the Boolean output(s) as in the conclusion to that proof: mixing

in some ML, the context is:

- let val (u,u’)= [---] in

let val ((x,y),(x’,y’))= (u (f,g), u’ (f’,g’)) in

((x a, y b),(x’ a’, y’ b’)) end end;

Again, a can only flow as an argument to f if True flows to (u,u’), leaving (f,g)

unchanged, which can only happen if some closure 〈(λ w.wx1x2 · · ·xn),ρ〉 provides a satis-

fying truth valuation for φ . We have as a consequence:

Theorem 8

The control flow problem for 1CFA is NPTIME-hard.

Having established this lower bound for 1CFA, we now argue the result generalizes to

all values of k > 0. Observe that by going from kCFA to (k + 1)CFA, further context-

sensitivity is introduced. But, this added precision can be undone by inserting an identity

function application at the point relevant to answering the flow question. This added calling

context consumes the added bit of precision in the analysis and renders the analysis of rest

of the program equivalently to the courser analysis. Thus, it is easy to insert an identity

function into the above construction such that 2CFA on this program produces the same

results as 1CFA on the original. So for any k > 1, we can construct an NPTIME-hard

computation by following the above construction and inserting k− 1 application sites to

eat up the precision added beyond 1CFA. The result is equivalent to 1CFA on the original

term, so we conclude:

Theorem 9

The control flow problem for kCFA is NPTIME-hard, for any k > 0.

At this point, there is a tension in the results. On the one hand, kCFA is contained

in EXPTIME; on the other, kCFA requires at least NPTIME-time to compute. So a gap

remains; either the algorithm for computing kCFA can be improved and put into NPTIME,

or the lower bound can be strengthened by exploiting more computational power from the

analysis.
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We observe that while the computation of the entire cache requires exponential time,

perhaps the existence of a specific flow in it may well be computable in NPTIME. A non-

deterministic algorithm might compute using the “collection semantics” E JtℓK
ρ
δ

, but rather

than compute entire sets, choose the element of the set that bears witness to the flow. If so

we could conclude kCFA is NPTIME-complete.

However, this is not the case. We show that the lower bound can be improved and kCFA

is complete for EXPTIME. The improvement relies on simulating an exponential iterator

using analysis. The following section demonstrates the core of the idea.

4.4 Nonlinearity and Cartesian Products:

a toy calculation, with insights

A good proof has, at its heart, a small and simple idea that makes it work. For our proof,

the key idea is how the approximation of analysis can be leveraged to provide computing

power above and beyond that provided by evaluation. The difference between the two can

be illustrated by the following term:

(λ f .( f True)( f False))

(λ x.Impliesxx)

Consider evaluation: Here Impliesxx (a tautology) is evaluated twice, once with x bound

to True, once with x bound to False. But in both cases, the result is True. Since x is bound

to True or False both occurrences of x are bound to True or to False—but it is never

the case, for example, that the first occurrence is bound to True, while the second is bound

to False. The values of each occurrence of x is dependent on the other.

On the other hand, consider what flows out of Impliesxx according 1CFA: both True

and False. Why? The approximation incurs analysis of Impliesxx for x bound to True

and False, but it considers each occurrence of x as ranging over True and False, in-

dependently. In other words, for the set of values bound to x, we consider their cross

product when x appears nonlinearly. The approximation permits one occurrence of x be

bound to True while the other occurrence is bound to False; and somewhat alarmingly,

ImpliesTrueFalse causes False to flow out. Unlike in normal evaluation, where within

a given scope we know that multiple occurrences of the same variable refer to the same

value, in the approximation of analysis, multiple occurrences of the same variable range

over all values that they are possible bound to independent of each other.

Now consider what happens when the program is expanded as follows:

(λ f .( f True)( f False))

(λ x.(λ p.p(λ u.p(λ v.Impliesuv)))(λ w.wx))

Here, rather than pass x directly to Implies, we construct a unary tuple λ w.wx. The tuple

is used nonlinearly, so p will range over closures of λ w.wx with x bound to True and

False, again, independently.

A closure can be approximated by an exponential number of values. For example, λ w.wz1z2 . . . zn

has n free variables, so there are an exponential number of possible environments mapping

these variables to program points (contours of length 1). If we could apply a Boolean
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function to this tuple, we would effectively be evaluating all rows of a truth table; following

this intuition leads to NPTIME-hardness of the 1CFA control flow problem.

Generalizing from unary to n-ary tuples in the above example, an exponential number

of closures can flow out of the tuple. For a function taking two n-tuples, we can compute

the function on the cross product of the exponential number of closures.

This insight is the key computational ingredient in simulating exponential time, as we

describe in the following section.

4.5 kCFA is EXPTIME-hard

4.5.1 Approximation and EXPTIME

Recall the formal definition of a Turing machine: a 7-tuple

〈Q,Σ,Γ,δ ,q0,qa,qr〉

where Q, Σ, and Γ are finite sets, Q is the set of machine states (and {q0,qa,qr} ⊆Q), Σ is

the input alphabet, and Γ the tape alphabet, where Σ ⊆ Γ. The states q0, qa, and qr are the

machine’s initial, accept, and reject states, respectively. The complexity class EXPTIME

denotes the languages that can be decided by a Turing machine in time exponential in the

input length.

Suppose we have a deterministic Turing machine M that accepts or rejects its input x in

time 2p(n), where p is a polynomial and n = |x|. We want to simulate the computation of M

on x by kCFA analysis of a λ -term E dependent on M,x, p, where a particular closure will

flow to a specific program point iff M accepts x. It turns out that k = 1 suffices to carry out

this simulation. The construction, computed in logarithmic space, is similar for all constant

k > 1 modulo a certain amount of padding as described in subsection 4.3.

4.5.2 Coding Machine IDs

The first task is to code machine IDs. Observe that each value stored in the abstract cache

Ĉ is a closure—a λ -abstraction, together with an environment for its free variables. The

number of such abstractions is bounded by the program size, as is the domain of the

environment—while the number of such environments is exponential in the program size.

(Just consider a program of size n with, say, n/2 free variables mapped to only 2 program

points denoting bindings.)

Since a closure only has polynomial size, and a Turing machine ID has exponential size,

we represent the latter by splitting its information into an exponential number of closures.

Each closure represents a tuple 〈T,S,H,C,b〉, which can be read as

“At time T , Turing machine M was in state S, the tape position was at cell H, and cell

C held contents b.”

T , S, H, and C are blocks of bits (0≡ True, 1≡ False) of size polynomial in the input

to the Turing machine. As such, each block can represent an exponential number of values.

A single machine ID is represented by an exponential number of tuples (varying C and b).

Each such tuple can in turn be coded as a λ -term λ w.wz1z2 · · · zN , where N = O(p(n)).
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We still need to be able to generate an exponential number of closures for such an N-ary

tuple. The construction is only a modest, iterative generalization of the construction in our

toy calculation above:

(λ f1.( f1 0)( f1 1))
(λ z1.

(λ f2.( f2 0)( f2 1))
(λ z2.
· · ·

(λ fN .( fN 0)( fN 1))

(λ zN .((λx.x)(λw.wz1z2 · · ·zN))ℓ) · · ·))

Fig. 15. Generalization of toy calculation for kCFA.

In the inner subterm,

((λ x.x)(λ w.wz1z2 · · ·zN))ℓ,

the function λ x.x acts as a very important form of padding. Recall that this is kCFA with

k = 1—the expression (λ w.wz1z2 · · ·zN) is evaluated an exponential number of times—to

see why, normalize the term—but in each instance, the contour is always ℓ. (For k > 1,

we would just need more padding to evade the polyvariance of the flow analyzer.) As a

consequence, each of the (exponential number of) closures gets put in the same location of

the abstract cache Ĉ, while they are placed in unique, different locations of the exact cache

C. In other words, the approximation mechanism of kCFA treats them as if they are all the

same. (That is why they are put in the same cache location.)

4.5.3 Transition Function

Now we define a binary transition function δ , which does a piecemeal transition of the

machine ID. The transition function is represented by three rules, identified uniquely by

the time stamps T on the input tuples.

The first transition rule is used when the tuples agree on the time stamp T , and the head

and cell address of the first tuple coincide:

δ 〈T,S,H,H,b〉〈T,S′,H ′,C′,b′〉 =

〈T + 1,δQ(S,b),δLR(S,H,b),H,δΣ(S,b)〉

This rule computes the transition to the next ID. The first tuple has the head address and

cell address coinciding, so it has all the information needed to compute the next state, head

movement, and what to write in that tape cell. The second tuple just marks that this is an

instance of the computation rule, simply indicated by having the time stamps in the tuples

to be identical. The Boolean functions δQ,δLR,δΣ compute the next state, head position,

and what to write on the tape.

The second communication rule is used when the tuples have time stamps T + 1 and T :

in other words, the first tuple has information about state and head position which needs

to be communicated to every tuple with time stamp T holding tape cell information for an
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arbitrary such cell, as it gets updated to time stamp T + 1:

δ 〈T + 1,S,H,C,b〉〈T,S′,H ′,C′,b′〉= 〈T + 1,S,H,C′,b′〉

(H ′ 6= C′)

(Note that when H ′ = C′, we have already written the salient tuple using the transition

rule.) This rule communicates state and head position (for the first tuple computed with

time stamp T +1, where the head and cell address coincided) to all the other tuples coding

the rest of the Turing machine tape.

Finally, we define a catch-all rule, mapping any other pairs of tuples (say, with time

stamps T and T + 42) to some distinguished null value (say, the initial ID). We need this

rule just to make sure that δ is a totally defined function.

δ 〈T,S,H,C,b〉〈T ′,S′,H ′,C′,b′〉 = Null

(T 6= T ′ and T 6= T ′+ 1)

Clearly, these three rules can be coded by a single Boolean circuit, and we have all the

required Boolean logic at our disposal from subsection 2.5.

Because δ is a binary function, we need to compute a cross product on the coding of IDs

to provide its input. The transition function is therefore defined as in Figure 16. The Copy

Φ ≡ λ p.
let 〈u1,u2,u3,u4,u5〉= Copy5 p in

let 〈v1,v2,v3.v4,v5〉= Copy5 p in

(λw.w(φT u1v1)(φSu2v2) . . .(φbu5v5))
(λwT .λwS.λwH .λwC.λwb.

wT (λ z1.λ z2 . . .λ zT .
wS(λ zT+1.λ zT+2 . . .λ zT+S.

. . .
wb(λ zC+1.λ zC+2 . . .λ zC+b=m.

λw.wz1z2 . . .zm) . . .)))

Fig. 16. Turing machine transition function construction.

functions just copy enough of the input for the separate calculations to be implemented in

a linear way. Observe that this λ -term is entirely linear except for the two occurrences of

its parameter p. In that sense, it serves a function analogous to λ x.Impliesxx in the toy

calculation. Just as x ranges there over the closures for True and for False, p ranges over

all possible IDs flowing to the argument position. Since there are two occurrences of p, we

have two entirely separate iterations in the kCFA analysis. These separate iterations, like

nested “for” loops, create the equivalent of a cross product of IDs in the “inner loop” of the

flow analysis.

4.5.4 Context and Widget

The context for the Turing machine simulation needs to set up the initial ID and associated

machinery, extract the Boolean value telling whether the machine accepted its input, and

feed it into the flow widget that causes different flows depending on whether the value

flowing in is True or False. In this code, the λ x.x (with label ℓ′ on its application) serve
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C ≡ (λ f1.( f1 0)( f1 1))
(λ z1.

(λ f2.( f2 0)( f2 1))
(λ z2.
· · ·

(λ fN .( fN 0)( fN 1))

(λ zN .((λx.x)(Widget(Extract[ ]))ℓ)ℓ
′
) · · ·))

Fig. 17. EXPTIME-hard construction for kCFA.

as padding, so that the term within is always applied in the same contour. Extract extracts

a final ID, with its time stamp, and checks if it codes an accepting state, returning True

or False accordingly. Widget is our standard control flow test. The context is instantiated

with the coding of the transition function, iterated over an initial machine ID,

2n Φ λ w.w0 . . .0 · · ·Q0 · · ·H0 · · · z1z2 . . .zN0,

where Φ is a coding of transition function for M. The λ -term 2n is a fixed point operator for

kCFA, which can be assumed to be either Y, or an exponential function composer. There

just has to be enough iteration of the transition function to produce a fixed point for the

flow analysis.

To make the coding easy, we just assume without loss of generality that M starts by

writing x on the tape, and then begins the generic exponential-time computation. Then we

can just have all zeroes on the initial tape configuration.

Lemma 11

For any Turing machine M and input x of length n, where M accepts or rejects x in 2p(n)

steps, there exists a logspace-constructable, closed, labeled λ -term e with distinguished

label ℓ such that in the kCFA analysis of e (k > 0), True flows into ℓ iff M accepts x.

Theorem 10

The control flow problem for kCFA is complete for EXPTIME for any k > 0.

4.6 Exact kCFA is PTIME-complete

At the heart of the EXPTIME-completeness result is the idea that the approximation inher-

ent in abstract interpretation is being harnessed for computational power, quite apart from

the power of exact evaluation. To get a good lower bound, this is necessary: it turns out

there is a dearth of computation power when kCFA corresponds with evaluation, i.e. when

the analysis is exact.

As noted earlier, approximation arises from the truncation of contours during analysis.

Consequently, if truncation never occurs, the instrumented interpreter and the abstract

interpreter produce identical results for the given program. But what can we say about

the complexity of these programs? In other words, what kind of computations can kCFA

analyze exactly when k is a constant, independent of the program analyzed? What is the

intersection between the abstract and concrete interpreter?

An answer to this question provides another point in the characterization of the expres-

siveness of an analysis. For 0CFA, the answer is PTIME since the evaluation of linear terms

is captured. For kCFA, the answer remains the same.
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For any fixed k, kCFA can only analyze polynomial time programs exactly, since, in

order for an analysis to be exact, there can only one entry in each cache location, and there

are only nk+1 locations. But from this it is clear that only through the use of approximation

that a exponential time computation can be simulated, but this computation has little to do

with the actual running of the program. A program that runs for exponential time cannot

be analyzed exactly by kCFA for any constant k.

Contrast this with ML-typability, for example, where the evaluation of programs that run

for exponential time can be simulated via type inference.

Note that if the contour is never truncated, every program point is now approximated

by at most one closure (rather than an exponential number of closures). The size of the

cache is then bounded by a polynomial in n; since the cache is computed monotonically,

the analysis and the natural related decision problem is constrained by the size and use of

the cache.

Proposition 1

Deciding the control flow problem for exact kCFA is complete for PTIME.

This proposition provides a characterization of the computational complexity (or ex-

pressivity) of the language evaluated by the instrumented evaluator E of section ?? as a

function of the contour length.

It also provides an analytic understanding of the empirical observation researchers have

made: computing a more precise analysis is often cheaper than performing a less precise

one, which “yields coarser approximations, and thus induces more merging. More merging

leads to more propagation, which in turn leads to more reevaluation” (Wright & Jagannathan, 1998).

(Might & Shivers, 2006b) make a similar observation: “imprecision reinforces itself during

a flow analysis through an ever-worsening feedback loop.” This ever-worsening feedback

loop, in which we can make False (spuriously) flow out of Impliesxx, is the critical

ingredient in our EXPTIME lower bound.

Finally, the asymptotic differential between the complexity of exact and abstract inter-

pretation shows that abstract interpretation is strictly more expressive, for any fixed k.

4.7 Discussions

We observe an “exponential jump” between contour length and complexity of the control

flow decision problem for every polynomial-length contour, including contours of constant

length. Once k = n (contour length equals program size), an exponential-time hardness

result can be proved which is essentially a linear circuit with an exponential iterator—

very much like (Mairson, 1990). When the contours are exponential in program length, the

decision problem is doubly exponential, and so on.

The reason for this exponential jump is the cardinality of environments in closures. This,

in fact, is the bottleneck for control flow analysis—it is the reason that 0CFA (without

closures) is tractable, while 1CFA is not. If f (n) is the contour length and n is the program

length, then

|CEnv|= |Var→ ∆≤ f (n)|= (n f (n))n = 2 f (n)n lgn

This cardinality of environments effectively determines the size of the universe of values

for the abstract interpretation realized by CFA.
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When k is a constant, one might ask why the inherent complexity is exponential time, and

not more—especially since one can iterate (in an untyped world) with the Y combinator.

Exponential time is the “limit” because with a polynomial-length tuple (as constrained by

a logspace reduction), you can only code an exponential number of closures.

The idea behind kCFA is that the precision of could dialed up, but there are essentially

two settings to the kCFA hierarchy: high (k > 0, EXPTIME) and low (k = 0). We can see,

from a computational complexity perspective, that 0CFA is strictly less expressive than

kCFA. In turn, kCFA is strictly less expressive than, for example, Mossin’s flow analysis

(1997a). Mossin’s analysis is a stronger analysis in the sense that it is exact for a larger

class of programs than 0CFA or kCFA—it exact not only for linear terms, but for all

simply-typed terms. In other words, the flow analysis of simply-typed programs is syn-

onymous with running the program, and hence non-elementary. This kind of expressivity

is also found in Burn-Hankin-Abramsky-style strictness analysis (1985). But there is a

considerable gap between kCFA and these more expressive analyses. What is in between

and how can we build a real hierarchy of static analyses that occupy positions within this

gap?

This argues that the relationship between dial level N and N +1 should be exact. This is

the case with say simple-typing and ML-typing. (ML = simple + let reduction). There is no

analogous relationship known between k and k+1CFA. A major computational expense in

kCFA is the approximation engendering further approximation and re-evaluation. Perhaps

by staging analysis into polyvariance and approximation phases, the feedback loop of

spurious flows can be avoided.

If you had an analysis that did some kind of exact, bounded, evaluation of the program

and then analyzed the residual with 0CFA, you may have a far more usable analysis than

with the kCFA hierarchy.

The precision of kCFA is highly sensitive to syntactic structure. Simple program refac-

torings such as η-expansion have drastic effects on the results of kCFA and can easily

undermine the added work of a more and more precise analysis. Indeed, we utilize these

simple refactorings to undermine the added precision of kCFA to generalize the hardness

results from the case of 1CFA to all k > 0 CFA. But an analysis that was robust in the face

of these refactorings could undermine these lower bounds.

In general, techniques that lead to increased precision will take computational power

away from our lower bound constructions. For instance, it is not clear what could be said

about lower bounds on the complexity of a variant of kCFA that employed abstract garbage

collection (Might & Shivers, 2006b), which allows for the safe removal of values from the

cache during computation. It is critical in the lower bound construction that what goes into

the cache, stays in the cache.

Lévy’s notion of labeled reduction (1978; 1980) provides a richer notion of “instru-

mented evaluation” coupled with a richer theory of exact flow analysis, namely the geom-

etry of interaction (Girard, 1989; Gonthier et al., 1992). With the proper notion of abstrac-

tion and simulated reduction, we should be able to design more powerful flow analyses,

filling out the hierarchy from 0CFA up to the expressivity of Mossin’s analysis in the limit.
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4.8 Conclusions

Empirically observed increases in costs can be understood analytically as inherent in the

approximation problem being solved.

We have given an exact characterization of the kCFA approximation problem. The EX-

PTIME lower bound validates empirical observations and shows that there is no tractable

algorithm for kCFA.

The proof relies on previous insights about linearity, static analysis, and normalization

(namely, when a term is linear, static analysis and normalization are synonymous); coupled

with new insights about using nonlinearity to realize the full computational power of

approximate, or abstract, interpretation.

Shivers wrote in his best of PLDI retrospective (2004),

Despite all this work on formalising CFA and speeding it up, I have been disappointed

in the dearth of work extending its power.

This work has shown that work spent on speeding up kCFA is an exercise in futility;

there is no getting around the exponential bottleneck of kCFA. The one-word description

of the bottleneck is closures, which do not exist in 0CFA, because free variables in a closure

would necessarily map to ε , and hence the environments are useless.

This detailed accounting of the ingredients that combine to make kCFA hard, when

k > 0, should provide guidance in designing new abstractions that avoid computationally

expensive components of analysis. A lesson learned has been that closures, as they exist

when k > 0, result in an exponential value space that can be harnessed for the EXPTIME

lower-bound construction.

This dissertation draws upon several large veins of research. At the highest level, this

includes complexity, semantics, logic, and program analysis. This chapter surveys related

work to sketch applications and draw parallels with existing work.

5 Monovariant Flow Analysis

In the setting of first-order programming languages, (Reps, 1996) gives a complexity inves-

tigation of program analyses and shows interprocedural slicing to be complete for PTIME

and that obtaining “meet-over-all-valid-paths” solutions of distributive data-flow analysis

problems (Hecht, 1977) is PTIME-hard in general, and PTIME-complete when there are

only a finite number of data-flow facts. A circuit-value construction by interprocedural

data-flow analysis is given using Boolean circuitry encoded as call graph gadgets, similar

in spirit to our constructions in section 2.

In the setting of higher-order programming languages, (Melski & Reps, 2000) give a

complexity investigation of 0CFA-like, inclusion-based monovariant flow analysis for a

functional language with pattern matching. The analysis takes the form of a constraint

satisfaction problem and this satisfaction problem is shown to be complete for PTIME.

See section 7 for further discussion.

The impact of pattern matching on analysis complexity is further examined by (Heintze & McAllester, 1997b),

which shows how deep pattern matching affects monovariant analysis, making it complete

for EXPTIME.
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6 Linearity and Static Analysis

(Jagannathan et al., 1998) observe that flow analysis, which is a may analysis, can be

adapted to answer must analysis questions by incorporating a “per-program-point variable

cardinality map, which indicates whether all reachable environments binding a variable

x hold the same value. If so, x is marked single at that point; otherwise x is marked

multiple.” The resulting must-alias information facilities program optimization such as

lightweight closure conversion (Steckler & Wand, 1997). This must analysis is a simple

instance of tracking linearity information in order to increase the precision of the analysis.

(Might & Shivers, 2006b) use a similar approach of abstract counting, which distinguish

singleton and non-singleton flow sets, to improve flow analysis precision.

Something similar can be observed in 0CFA without cardinality maps; singleton flow

sets Ĉ(ℓ) = {λ x.e}, which are interpreted as “the expression labelled ℓ may evaluate to one

of {λ x.e},” convey must information. The expression labelled ℓ either diverges or evaluates

to λ x.e. When λ x.e is linearly closed—the variables map to singleton sets containing linear

closures—then the run-time value produced by the expression labelled ℓ can be determined

completely at analysis time. The idea of taking this special case of must analysis within a

may analysis to its logical conclusion is the basis of section 2.

(Damian & Danvy, 2003) have investigated the impact of linear β -reduction on the result

of flow analysis and show how leastness is preserved. The result is used to show that

leastness is preserved through CPS and administrative reductions, which are linear.

An old, but key, observation about the type inference problem for simply typed λ -terms

is that, when the term is linear (every bound variable occurs exactly once), the most general

type and normal form are isomorphic (Hindley, 1989; Hirokawa, 1991; Henglein & Mairson, 1991;

Mairson, 2004).14

The observation translates to flow analysis, as shown in section 2, but in a typed setting,

it also scales to richer systems. The insight leads to an elegant reproof of the EXPTIME-

hardness of ML-type inference result from (Mairson, 1990) (Henglein, 1990). It was used

to prove novel lower bounds on type inference for System Fω (Henglein & Mairson, 1991)

and rank-bound intersection type inference (Møller Neergaard & Mairson, 2004). See section 14

for further discussion.

7 Context-Free-Language Reachability

(Melski & Reps, 2000) show the interconvertibility between a number of set-constraint

problems and the context-free-language (CFL) reachability problem, which is known to

be complete for PTIME (Ullman & van Gelder, 1986). (Heintze, 1994) develops a set-

based approach to flow analysis for a simple untyped functional language with functions,

applications, pattern-matching, and recursion. The analysis works by making a pass over

the program, generating set constraints, which can then be solved to compute flow anal-

ysis results. Following Melski and Reps, we refer to this constraint system as ML set-

14 The seed of inspiration for this work came from a close study of (Mairson, 2004) in the Spring
of 2005 for a seminar presentation given in a graduate course on advanced topics in complexity
theory at the University of Vermont.
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constraints. For the subset of the language considered in this dissertation, solving these

constraints computes a monovariant flow analysis that coincides with 0CFA.

In addition to the many set-constraint problems considered, which have applications to

static analysis of first-order programming languages, [section 5] (Melski & Reps, 2000)

also investigate the problem of solving the ML set-constraints used by Heintze. They

show this class of set-constraint problems can be solved in cubic time with respect to

the size of the input constraints. Since (Heintze, 1994) gave a O(n3) algorithm for solving

these constraints, Melski and Reps’ result demonstrates the conversion to CFL-reachability

preserves cubic-solvability, while allowing CFL-reachability formulations of static analy-

ses, such as program slicing and shape analysis, to be brought to bear on higher-order

languages, where previously they had only been applied in a first-order setting.

After showing ML set-constraints can be solved using CFL-reachability, [section 6]

(Melski & Reps, 2000) also prove the converse holds: CFL-reachability problems can be

solved by reduction to ML set-constraint problems while preserving the worse-case asymp-

totic complexity. By the known PTIME-hardness of CFL-reachability, this implies ML set-

constraint satisfaction is PTIME-complete. It does not follow, however, that 0CFA is also

PTIME-complete.

It is worth noting that Melski and Reps are concerned with constraint satisfaction, and

not directly with flow analysis—the two are intimately related, but the distinction is im-

portant. It follows as a corollary that since ML set-constraints can be solved, through a

reduction to CFL-reachability, flow analysis can be performed in cubic time. [page 314]

(Heintze, 1994) observes that the size of the set-constraint problem generated by the initial

pass of the program is linear in the size of the program being analyzed. Therefore it is

straightforward to derive from the ML set-constraint to CFL-reachability reduction the

(known) inclusion of 0CFA in PTIME.

In the other direction, it is not clear that it follows from the PTIME-hardness of ML

set-constraint satisfaction that flow analysis of Heintze’s subject language is PTIME-hard.

Melski and Reps use the constraint language directly in their encoding of CFL-reachability.

What remains to be seen is whether there are programs which could be constructed that

would induce these constraints. Moreover, their reduction relies soley on the “case” con-

straints of Heintze, which are set constraints induced by pattern matching expressions in

the source language.

If the source language lacks pattern matching, the Boolean circuit machinery of Melski

and Reps can no longer be constructed since no expressions induce the needed “case”

constraints. For this language, the PTIME-hardness of constraint satisfaction and 0CFA

does not follow from the results of Melski and Reps.

This reiterates the importance of Reps’ own observation that analysis problems should

be formulated in “trimmed-down form,” which both leads to a wider applicability of the

lower bounds and “allows one to gain greater insight into exactly what aspects of an

[. . . ] analysis problem introduce what computational limitations on algorithms for these

problems,” [section 2] (Reps, 1996).

By considering only the core subset of every higher-order programming language and re-

lying on the specification of analysis, rather than its implementation technology, the 0CFA

PTIME-completeness result implies as an immediate corollary the PTIME-completeness

of the ML set-constraint problem considered by Melski and Reps. Moreover, as we have
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seen, our proof technique of using linearity to subvert approximation is broadly applicable

to further analysis approximations, whereas CFL-reachability reductions must be replayed

mutatis mutandis.

8 2NPDA and the Cubic Bottleneck

The class 2PNDA contains all languages that are recognizable by a two-way non-deterministic

push-down automaton.15 The familiar PDAs found in undergraduate textbooks (Martin, 1997),

both deterministic and non-deterministic, are one-way: consuming their input from left-to-

right. In contrast, two-way NPDAs accept their input on a read-only input tape marked

with special begin and end markers, on which they can move the read-head forwards,

backwards, or not at all.

Over a decade ago, (Heintze & McAllester, 1997c) proved deciding a monovariant flow

analysis problem to be at least as hard as 2PNDA, and argued this provided evidence the

“cubic bottleneck” of flow analysis was unlikely to be overcome since the best known

algorithm for 2PNDA was cubic and had not been improved since its formulation by

(Aho et al., 1968). This statement was made by several other papers (Neal, 1989; Heintze & McAllester, 1997c;

Heintze & McAllester, 1997a; Melski & Reps, 2000; McAllester, 2002; Van Horn & Mairson, 2008).

Yet collectively, this is simply an oversight in the history of events; (Rytter, 1985) improved

the cubic bound by a logarithmic factor.

Since then, Rytter’s technique has been used in various contexts: in diameter verification,

in Boolean matrix multiplication, and for the all pairs shortest paths problem (Basch et al., 1995;

Zwick, 2006; Chan, 2007), as well as for reachability in recursive state machines (Chaudhuri, 2008),

and for maximum node-weighted k-clique (Vassilevska, 2009) to name a few. In particular,

(Chaudhuri, 2008) recently used Rytter’s techniques to formulate a subcubic algorithm for

the related problem of context-free language (CFL) reachability. Perhaps unknown to most,

indirectly this constitutes the first subcubic inclusion-based flow analysis algorithm when

combined with a reduction due to (Melski & Reps, 2000).

The logarithmic improvement can be carried over to the flow analysis problem directly,

by applying the same known set compression techniques (Rytter, 1985) applies to improve

deciding 2PNDA. Moreover, refined analyses similar to (Heintze & McAllester, 1997b)

that incorporate notions of reachability to improve precision remain subcubic. See (Midtgaard & Van Horn, 2009)

for details.

0CFA is complete for both 2PNDA (Heintze & McAllester, 1997c) and PTIME (section 2).

Yet, it is not clear what relation these class have to each other.

The 2PNDA inclusion proof of Heintze and McAllester is sensitive to representation

choices and problem formulations. They use an encoding of programs that requires a non-

standard bit string labelling scheme in which identical subterms have the same labels.

The authors remark that without this labelling scheme, the problem “appears not to be in

2PNDA.”

Moreover, the notions of reduction employed in the definitions of 2PNDA-hardness and

PTIME-hardness rely on different computational models. For a problem to be 2PNDA-

hard, all problems in the class must be reducible to it in O(nR(logn)) time on a RAM,

15 This section is derived from material in (Midtgaard & Van Horn, 2009).
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where R is a polynomial. Whereas for a problem to be PTIME-hard, all problems in the

class must be reducible to it using a O(logn) space work-tape on a Turing machine.

9 kCFA

Our coding of Turing machines is descended from work on Datalog (Prolog with variables,

but without constants or function symbols), a programming language that was of consider-

able interest to researchers in database theory during the 1980s; see (Hillebrand et al., 1995;

Gaifman et al., 1993).

In kCFA and abstract interpretation more generally, an expression can evaluate to a set

of values from a finite universe, clearly motivating the idiom of programming with sets.

Relational database queries take as input a finite set of tuples, and compute new tuples

from them; since the universe of tuples is finite and the computation is monotone, a fixed-

point is reached in a finite number of iterations. The machine simulation here follows that

framework very closely. Even the idea of splitting a machine configuration among many

tuples has its ancestor in (Hillebrand et al., 1995), where a ternary cons(A,L,R) is used

to simulate a cons-cell at memory address A, with pointers L,R. It needs emphasis that

the computing with sets described in this paper has little to do with normalization, and

everything to do with the approximation inherent in the abstract interpretation.

Although kCFA and ML-type inference are two static analyses complete for EXPTIME

(Mairson, 1990), the proofs of these respective theorems is fundamentally different. The

ML proof relies on type inference simulating exact normalization (analogous to the PTIME-

completeness proof for 0CFA), hence subverting the approximation of the analysis. In

contrast, the kCFA proof harnesses the approximation that results from nonlinearity.

10 Class Analysis

Flow analysis of functional languages is complicated by the fact that computations are ex-

pressible values. This makes basic questions about control flow undecidable in the general

case. But the same is true in object-oriented programs—computations may be package up

as values, passed as arguments, stored in data-structures, etc.—and so program analyses in

object-oriented settings often deal with the same issues as flow analysis. A close analogue

of flow analysis is class analysis.

Expressions in object-oriented languages may have a declared class (or type) but, at run-

time, they can evaluate to objects of every subclass of the class. Class analysis computes

the actual set of classes that an expression can have at run-time (Johnson et al., 1988;

Chambers & Ungar, 1990; Palsberg & Schwartzbach, 1991; Bacon & Sweeney, 1996). Class

analysis is sometimes called receiver class analysis, type analysis, or concrete type infer-

ence; it informs static method resolution, inlining, and other program optimizations.

An object-oriented language is higher-order in the same way as a language with first-

class functions and exactly the same circularity noted by Shivers occurs in the class analysis

of an object-oriented language.

(Grove & Chambers, 2001):

In object-oriented languages, the method invoked by a dynamically dispatched message

send depends on the class of the object receiving the message; in languages with function
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values, the procedure invoked by the application of a computed function value is

determined by the function value itself. In general, determining the flow of values needed

to build a useful call graph requires an interprocedural data and control flow analysis of

the program. But interprocedural analysis in turn requires that a call graph be built prior

to the analysis being performed.

Ten years earlier, [page 6] (Shivers, 1991)16 had written essentially the same:

So, if we wish to have a control-flow graph for a piece of Scheme code, we need to

answer the following question: for every procedure call in the program, what are the

possible lambda expressions that call could be a jump to? But this is a flow analysis

question! So with regard to flow analysis in an HOL, we are faced with the following

unfortunate situation:

• In order to do flow analysis, we need a control-flow graph.

• In order to determine control-flow graphs, we need to do flow analysis.

Class analysis is often presented using the terminology of type inference, however these

type systems typically more closely resemble flow analysis: types are finite sets of classes

appearing syntactically in the program and subtyping is interpreted as set inclusion.

In other words, objects are treated much like functions in the flow analysis of a functional

language—typically both are approximated by a set of definition sites, i.e. an object is

approximated by a set of class names that appear in the program; a function is approxi-

mated by a set of λ occurrences that appear in the program. In an object-oriented program,

we may ask of a subexpression, what classes may the subexpression evaluate to? In a

functional language we may ask, what λ terms may this expression evaluate to? Notice

both are general questions that analysis must answer in a higher order setting if you want

to know about control flow. To know where control may transfer to from ( f x) we have to

know what f may be. To know where control may transfer to from f.apply(x)we have to

know what f may be. In both cases, if we approximate functions by sets of λ s and objects

by sets of class names, we may determine a set of possible places in code where control

may transfer, but we will not know about the environment of this code, i.e. the environment

component of a closure or the record component of an object.

(Spoto & Jensen, 2003) give a reformulation of several class analyses, including that

of (Palsberg & Schwartzbach, 1991; Bacon & Sweeney, 1996; Diwan et al., 1996), using

abstract interpretation.

(DeFouw et al., 1998) presents a number of variations on the theme of monovariant class

analysis. They develop a framework that can be instantiated to obtain inclusion, equality,

and optimistic based class analyses with close analogies to 0CFA, simple closure analysis,

and rapid type analysis (Bacon & Sweeney, 1996), respectively. Each of these instantia-

tions enjoy the same asymptotic running times as their functional language counterparts;

cubic, near linear, and linear, respectively.

Although some papers give upper bounds for the algorithms they present, there are very

few lower bound results in the literature.17

16 It is a testament to Shivers’ power as a writer that his original story has been told over and over
again in so many places, usually with half the style.

17 I was able to find zero papers that deal directly with lower bounds on class analysis complexity.
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new Fun<Fun<B,List<B>>,List<B>>() {

public List<B> apply(Fun<B,List<B>> f1) {

f1.apply(true);

return f1.apply(false);

}

}.apply(new Fun<B,List<B>>() {

public List<B> apply(final B x1) {

return

new Fun<Fun<B,List<B>>,List<B>>() {

public List<B> apply(Fun<B,List<B>> f2) {

f2.apply(true);

return f2.apply(false);

}

}.apply(new Fun<B,List<B>>() {

public List<B> apply(final B x2) {

return

...

new Fun<Fun<B,List<B>>,List<B>>() {

public List<B> apply(Fun<B,List<B>> fn) {

fn.apply(true);

return fn.apply(false);

}

}.apply(new Fun<B,List<B>>() {

public List<B> apply(final B xn) {

return

new List<B>{x1,x2,...xn};}}

Fig. 18. Translation of kCFA EXPTIME-construction into an object-oriented language.

Class analysis is closely related to points-to analysis in object-oriented languages. “Points-

to analysis is a fundamental static analysis used by optimizing compilers and software

engineering tools to determine the set of objects whose addresses may be stored in refer-

ence variables and reference fields of objects,” (Milanova et al., 2005). When a points-to

analysis is flow-sensitive—“analyses take into account the flow of control between program

points inside a method, and compute separate solutions for these points,” (Milanova et al., 2005)—

the analysis necessarily involves some kind of class analysis.

In object-oriented languages, context-sensitive is typically distinguished as being object-

sensitive (Milanova et al., 2005), call-site sensitive (Grove & Chambers, 2001), or partially

flow sensitivity (Rinetzky et al., 2008).

(Grove & Chambers, 2001) provide a framework for a functional and object-oriented

hybrid language that can be instantiated to obtain a kCFA analysis and an object-oriented

analogue called k-l-CFA. There is a discussion and references in Section 9.1. In this dis-

cussion, (Grove & Chambers, 2001) cite (Oxhøj et al., 1992) as giving “1-CFA extension

to Palsberg and Schwartzbach’s algorithm,” although the paper develops the analysis as a

type inference problem. Grove and Chambers also cite (Vitek et al., 1992) as one of several

“adaptations of kCFA to object-oriented programs,” and although this paper actually has

analogies to kCFA in an object-oriented setting (they give a call-string approach to call

graph context sensitivity in section 7), it seems to be developed completely independently

of Shivers’ kCFA work or any functional flow analysis work.
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The construction of Figure 15 can be translated in an object-oriented language such as

Java, as given in Figure 18.18 Functions are simulated as objects with an apply method.

The crucial subterm in Figure 18 is the construction of the list {x1,x2,..xn}, where

xi occur free with the context of the innermost “lambda” term, new Fun() {...}. To

be truly faithful to the original construction, lists would be Church-encoded, and thus

represented with a function of one argument, which is applied to x1 through xn. An

analysis with a similar context abstraction to 1CFA will approximate the term representing

the list x1,x2,...,xn with an abstract object that includes 1 bit of context information

for each instance variable, and thus there would be 2n values flowing from this program

point, one for each mapping xi to the calling context in which it was bound to either true or

false for all possible combinations. (Grove & Chambers, 2001) develop a framework for

call-graph construction which can be instantiated in the style of 1CFA and the construction

above should be adaptable to show this instantiation is EXPTIME-hard.

A related question is whether the insights about linearity can be carried over to the setting

of pointer analysis in a first-order language to obtain simple proofs of lower bounds. If so,

is it possible higher-order constructions can be transformed systematically to obtain first-

order constructions?

Type hierarchy analysis is a kind of class analysis particularly relevant to the discussion

in ?? and the broader applicability of the approach to proving lower bounds employed

in section 2. Type hierarchy analysis is an analysis of statically typed object-oriented lan-

guages that bounds the set of procedures a method invocation may call by examining the

type hierarchy declarations for method overrides. “Type hierarchy analysis does not exam-

ine what the program actually does, just its type and method declarations,” (Diwan et al., 1996).

It seems unlikely that the technique of ?? can be applied to prove lower bounds about this

analysis since it has nothing to do with approximating evaluation.

11 Pointer Analysis

Just as flow analysis plays a fundamental role in the analysis of higher-order functional

programs, pointer analysis19 plays a fundamental role in imperative languages with point-

ers (Landi, 1992a) and object-oriented languages, and informs later program analyses such

as live variables, available expressions, and constant propagation. Moreover, flow and alias

analysis variants are often developed along the same axes and have natural analogues with

each other.

For example, Henglein’s (1992) simple closure analysis and Steensgaard’s (1996) points-

to analysis are natural analogues. Both operate in near linear time by relying on equality-

based (rather than inclusion-based) set constraints, which can be implemented using a

union-find data-structure. Steensgaard algorithm “is inspired by Henglein’s (1991) binding

time analysis by type inference,” which also forms the conceptual basis for (Henglein, 1992).

Palsberg’s (1995) and Heintze’s (1994) constraint-based flow analysis and Andersen’s

18 This translation is Java except for the made up list constructor and some abbreviation in type
names for brevity, i.e. B is shorthand for Boolean.

19 Also known as alias and points-to analysis.
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(1994) pointer analysis are similarly analogous and bear a strong resemblance in their

use of subset constraints.

To get a full sense of the correspondence between pointer analysis and flow analysis,

read their respective surveys in parallel (Hind, 2001; Midtgaard, 2007). These comprise

major, mostly independent, lines of research. Given the numerous analogies, it is natural to

wonder what the pointer analysis parallels are to the results presented in this dissertation.

The landscape of the pointer analysis literature is much like that of flow analysis; there

are hundreds of papers; similar, over-loaded, and abused terminology is frequently used; it

concerns a huge variety of tools, frameworks, notations, proof techniques, implementation

techniques, etc. Without delving into too much detail, we recall some of the fundamental

concepts of pointer analysis, cite relevant results, and try to more fully develop the analo-

gies between flow analysis and pointer analysis.

A pointer analysis attempts to statically determine the possible run-time values of a

pointer. Given a program and two variables p and q, points-to analysis determines if p can

point to q (Chakaravarthy, 2003). It is clear that in general, like all interesting properties of

programs, it is not decidable if p can point q. A traditional assumption in this community

is that all paths in the program are executable. However, even under this conservative

assumption, the problem is undecidable. The history of pointer analysis can be understood

largely in terms of the trade-offs between complexity and precision.

Analyses are characterized along several dimensions (Hind, 2001), but of particular

relevance are those of:

• Equality-based: assignment is treated as an undirected flow of values.

• Subset-based: assignment is treated as a directed flow of values.

• Flow sensitivity

A points-to analysis is flow-sensitive analysis if it is given the control flow graph

for the analyzed program. The control flow graphs informs the paths considered

when determining the points-to relation. A flow-insensitive analysis is not given the

control flow graph and it is assumed statements can be executed in any order. See

also section 4.4 of (Hind, 2001) and section 2.3 of (Rinetzky et al., 2008).

• Context sensitivity

calling context is considered when analyzing a function so that calls return to their

caller. See also section 4.4 of (Hind, 2001).

(Bravenboer & Smaragdakis, 2009) remark:

In full context-sensitive pointer analysis, there is an ongoing search for context

abstractions that provide precise pointer information, and do not cause massive

redundant computation.20

The complexity of pointer analysis has been deeply studied (Myers, 1981; Landi & Ryder, 1991;

Landi, 1992a; Landi, 1992b; Choi et al., 1993; Ramalingam, 1994; Horwitz, 1997; Muth & Debray, 2000;

Chatterjee et al., 2001; Chakaravarthy & Horwitz, 2002; Chakaravarthy, 2003; Rinetzky et al., 2008).

20 That search has been reflected in the functional community as well, see for
example, (Shivers, 1991; Jagannathan & Weeks, 1995; Banerjee, 1997; Faxén, 1997;
Nielson & Nielson, 1997; Sereni, 2007; Ashley & Dybvig, 1998; Wright & Jagannathan, 1998;
Might & Shivers, 2006a; Might, 2007).
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Flow sensitive points-to analysis with dynamic memory is not decidable (Landi, 1992b;

Ramalingam, 1994; Chakaravarthy, 2003). Flow sensitive points-to analysis without dy-

namic memory is PSPACE-hard (Landi, 1992a; Muth & Debray, 2000), even when point-

ers are well-typed and restricted to only two levels of dereferencing (Chakaravarthy, 2003).

Context-sensitive pointer analysis can be done efficiently in practice (Emami et al., 1994;

Wilson & Lam, 1995). Flow and context-sensitive points-to analysis for Java can be effi-

cient and practical even for large programs (Milanova et al., 2005).

See (Muth & Debray, 2000; Chakaravarthy, 2003) for succinct overview of complexity

results and open problems.

12 Logic Programming

(McAllester, 2002) argues “bottom-up logic program presentations are clearer and simpler

to analyze, for both correctness and complexity” and provides theorems for characterizing

their run-time. McAllester argues bottom-up logic programming is especially appropriate

for static analysis algorithms. The paper gives a bottom-up logic presentation of evaluation

(Fig. 4) and flow analysis (Fig 5.) for the λ -calculus with pairing and uses the run-time

theorem to derive a cubic upper bound for the analysis.

Recent work by (Bravenboer & Smaragdakis, 2009) demonstrates how Datalog can be

used to specify and efficiently implement pointer analysis. By the PTIME-completeness of

Datalog, any analysis that can be specified is included in PTIME.

This bears a connection to the implicit computational complexity program, which has

sought to develop syntactic means of developing programming languages that capture

some complexity class (Hofmann, 1998; Leivant, 1993; Hofmann, 2003; Kristiansen & Niggl, 2004).

Although this community has focused on general purpose programming languages—with

only limited success in producing usable systems—it seems that restricting the domain of

interest to program analyzers may be a fruitful line of work to investigate.

The EXPTIME construction of subsection 4.5 has a conceptual basis in Datalog com-

plexity research (Hillebrand et al., 1995; Gaifman et al., 1993). See section 9 for a discus-

sion.

13 Termination Analysis

Termination analysis of higher-order programs (Jones & Bohr, 2008; Sereni & Jones, 2005;

Giesl et al., 2006; Sereni, 2007) is inherently tied to some underlying flow analysis.

Recent work by Sereni and Jones on the termination analysis of higher-order languages

has relied on an initial control flow analysis of a program, the result of which becomes

input to the termination analyzer (Sereni & Jones, 2005; Sereni, 2007). Once a call-graph

is constructed, the so-called “size-change” principle21 can be used to show that there is no

infinite path of decreasing size through through the program’s control graph, and therefore

the program eventually produces an answer. This work has noted the inadequacies of 0CFA

for producing precise enough graphs for proving most interesting programs terminating.

21 The size-change principle has enjoyed a complexity investigation in its own right (Lee et al., 2001;
Ben-Amram & Lee, 2007).
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Motivated by more powerful termination analyses, these researchers have designed more

powerful (i.e., more precise) control flow analyses, dubbed k-limited CFA. These analyses

are parametrized by a fixed bound on the depth of environments, like Shivers’ kCFA. So

for example, in 1-limited CFA, each variable is mapped to the program point in which it

is bound, but no information is retained about this value’s environment. But unlike kCFA,

this “limited” analysis is not polyvariant (context-sensitive) with respect to the most recent

k calling contexts.

A lesson of our investigation into the complexity of kCFA is that it is not the polyvariance

that makes the analysis difficult to compute, but rather the environments. Sereni notes that

the k-limited CFA hierarchy “present[s] different characteristics, in particular in the aspects

of precision and complexity” (Sereni, 2007), however no complexity characterization is

given.

14 Type Inference and Quantifier Elimination

Earlier work on the complexity of compile-time type inference is a precursor of the re-

search insights described here, and naturally so, since type inference is a kind of static anal-

ysis (Mairson, 1990; Henglein, 1990; Henglein & Mairson, 1991; Mairson, 2004). The de-

cidability of type inference depends on the making of approximations, necessarily rejecting

programs without type errors; in simply-typed λ -calculus, for instance, all occurrences of

a variable must have the same type. (The same is, in effect, also true for ML, modulo

the finite development implicit in let-bindings.) The type constraints on these multiple

occurrences are solved by first-order unification.

As a consequence, we can understand the inherent complexity of type inference by

analyzing the expressive power of linear terms, where no such constraints exist, since

linear terms are always simply-typable. In these cases, type inference is synonymous with

normalization.22 This observation motivates the analysis of type inference described by

(Mairson, 1990; Mairson, 2004).

Compared to flow analysis, type reconstruction has enjoyed a much more thorough

complexity analysis.

A key observation about the type inference problem for simply typed λ -terms is that,

when the term is linear (every bound variable occurs exactly once), the most general type

and normal form are isomorphic (Hindley, 1989; Hirokawa, 1991; Henglein & Mairson, 1991;

Mairson, 2004). So given a linear term in normal form, we can construct its most general

type (no surprise there), but conversely, when given a most general type, we can construct

the normal form of all terms with that type.

This insight becomes the key ingredient in proving the lower bound complexity of

simple-type inference—when the program is linear, static analysis is effectively “running”

the program. Lower bounds, then, can be obtained by simply hacking within the linear

λ -calculus.

22 An aberrant case of this phenomenon is examined by (Møller Neergaard & Mairson, 2004), which
analyzed a type system where normalization and type inference are synonymous in every case. The
tractability of type inference thus implied a certain inexpressiveness of the language.
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Aside: The normal form of a linear program can be “read back” from its most general

type in the following way: given a type σ1→ σ2→ . . .→ σk→ α , where α is a type

variable, we can conclude the normal form has the shape λ x1.λ x2. . . .λ xk.e. Since the

term is linear, and the type is most general, every type variable occurs exactly twice: once

positively and once negatively. Furthermore, there exists a unique

σi ≡ τ1→ τ2→ . . .→ τm→ α , so xi must be the head variable of the normal form, i.e.,

we now know: λ x1.λ x2. . . .λ xk.x1e′, and xi is applied to m arguments, each with type

τ1, . . . ,τm, respectively. But now, by induction, we can recursively construct the normal

forms of the arguments. The base case occurs when we get to a base type (a type

variable); here the term is just the occurrence of the λ -bound variable that has this

(unique) type. In other words, a negative type-variable occurrence marks a λ -binding,

while the corresponding positive type-variable occurrence marks the single occurrence of

the bound variable. The rest of the term structure is determined in a syntax-directed way

by the arrow structure of the type.

It has been known for a long time that type reconstruction for the simply typed λ -

calculus is decidable (Curry, 1969; Hindley, 1969), i.e. it is decidable whether a term of

the untyped λ -calculus is the image under type-erasing of a term of the simply typed λ -

calculus.23 (Wand, 1987) gave the first direct reduction to the unification problem (Herbrand, 1930;

Robinson, 1965; Dwork et al., 1984; Kanellakis et al., 1991). (Henglein, 1991; Henglein, 1992)

used unification to develop efficient type inference for binding time analysis and flow anal-

ysis, respectively. This work directly inspired the widely influential (Steensgaard, 1996)

algorithm.24

A lower bound on the complexity of type inference can often be leveraged by the

combinatorial power behind a quantifier elimination procedure (Mairson, 1992a). These

procedures are syntactic transformations that map programs into potentially larger pro-

grams that can been typed in a simpler, quantifier-free setting.

As an example, consider the case of ML polymorphism. The universal quantification in-

troduced by let-bound values can be eliminated by reducing all let-redexes. The residual

program is simply-typable if, and only if, the original program is ML-typable.

This is embodied in the following inference rule:25

Γ ⊢M : τ0 Γ ⊢ [M/x]N : τ1

Γ ⊢ let x = M in N : τ1

The residual may be exponentially larger due to nested let expressions that must all be

eliminated. From a Curry-Howard perspective, this can be seen as a form of cut-elimination.

From a computational perspective, this can be seen as a bounded running of the program at

compile time. From a software engineering perspective, this can be seen as code-reuse—

the ML-type inference problem has been reduced to the simple-type inference problem,

23 See (Tiuryn, 1990) for a survey of type inference problems, cited in (Cardone & Hindley, 2006).
24 See section 11 for more on the relation of pointer analysis and flow analysis.
25 In the survey, Type systems for programming languages, (Mitchell, 1990) attributes this

observation to Albert Meyer. [page 122] (Henglein & Mairson, 1991) point out in a footnote
that it also appears in the thesis of (Damas, 1985), and is the subject of a question on the 1985
postgraduate examination in computing at Edinburgh University.
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and thus to first-order unification. But the price is that an exponential amount of work may

now be required.

Full polymorphism is undecidable, but ML offers a limit form of outermost universal

quantification. But this restriction relegates polymorphic functions to a second-class citi-

zenship, so in particular, functions passed as arguments to functions (a staple of higher-

order programming) can only be used monomorphically.

Intersection types restore first-class polymorphism by offering a finite form of explicit

quantification over simple types. The type τ1∧ τ2 is used for a term that is typable as both

τ1 and τ2. This can formalized as the following inference rule for ∧:26

Γ1 ⊢M : τ1 Γ2 ⊢M : τ2

Γ1∧Γ2 ⊢M : τ1∧ τ2

where ∧ is lifted to environments in a straightforward way. Notice that this allows expres-

sions such as,

(λ f .λ z.z( f 2)( f false)) (λ x.x),

to be typed where x has type int∧bool.

The inference rule, as stated, breaks syntax-directed inference. (van Bakel, 1992) ob-

served that by limiting the rule to the arguments of function application, syntax-direction

can be recovered without changing the set of typable terms (although some terms will have

fewer typings). Such systems are called strict intersections since the ∧ can occur only on

the left of a function type.

The finite ∧-quantifiers of strict intersections too have an elimination procedure, which

can be understood as a program transformation that eliminates ∧-quantification by rank.

A type is rank r if there are no occurrences of ∧ to the left of r occurrences of an ar-

row. The highest rank intersections can be eliminated by performing a minimal complete

development.

Every strongly normalizing term has an intersection type, so type inference in general

is undecidable. However, decidable fragments can be regained by a standard approach of

applying a rank restriction, limiting the depth of ∧ to the left of a function type.

By bounding the rank, inference becomes decidable; if the rank is bound at k, k devel-

opments suffice to eliminate all intersections. The residual program is simply-typable if,

and only if, the original program is rank-k intersection typable. Since each development can

cause the program to grow by an exponential factor, iteratively performing k-MCD’s results

in an elementary lower bound (Kfoury et al., 1999; Møller Neergaard & Mairson, 2004).

The special case of rank-2 intersection types have proved to be an important case with

applications to modular flow analysis, dead-code elimination, and typing polymorphic

recursion, local definitions, conditionals and pattern matching (Damiani & Prost, 1998;

Damiani, 2003; Banerjee & Jensen, 2003; Damiani, 2007).

System F, the polymorphic typed λ -calculus (Reynolds, 1974; Girard et al., 1989), has

an undecidable Curry-style inference problem (Wells, 1999). Partial inference in a Church-

26 This presentation closely follows the informal presentation of intersection types in Chapter 4 of
(Møller Neergaard, 2004).
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style system is investigated by (Boehm, 1985; Pfenning, 1993) and Pfenning’s result shows

even partial inference for a simple predicative fragment is undecidable.

The quantifier-elimination approach to proving lower bounds was extended to System

Fω by (Henglein & Mairson, 1991). They prove a sequence of lower bounds on recog-

nizing the System Fk-typable terms, where the bound for Fk+1 is exponentially larger

than that for Fk. This is analogous to intersection quantifier elimination via complete

developments at the term level. The essence of (Henglein & Mairson, 1991) is to compute

developments at the kind level to shift from System Fk+1 to System Fk typability. This

technique led to lower bounds on System Fi and the non-elementary bound on System Fω

(Henglein & Mairson, 1991). (Urzyczyn, 1997) showed Curry-style inference for System

Fω is undecidable.

There are some interesting open complexity problems in the realm of type inference

and quantifier elimination. Bounded polymorphic recursion has recently been investigated

(Comini et al., 2008), and is decidable but with unknown complexity bounds, nor quan-

tifier elimination procedures. Typed Scheme (Tobin-Hochstadt & Felleisen, 2008), uses

explicit annotations, but with partial inference and flow sensitivity. It includes intersection

rules for function types. Complexity bounds on type checking and partial inference are

unknown.

The simple algorithm of (Wand, 1987), which generates constraints for type reconstruc-

tion, can also be seen as compiler for the linear λ -calculus. It compiles a linear term into

a “machine language” of first-order constraints of the form a = b and c = d → e. This

machine language is the computational analog of logic’s own low-level machine language

for first-order propositional logic, the machine-oriented logic of (Robinson, 1965).

Unifying these constraints effectively runs the machine language, evaluating the orig-

inal program, producing an answer in the guise of a solved form of the type, which is

isomorphic to the normal form of the program.

Viewed from this perspective, this is an instance of normalization-by-evaluation for the

linear λ -calculus. A linear term is mapped into the domain of first-order logic, where

unification is used to evaluate to a canonical solved form, which can be mapped to the

normal form of the term. Constraint-based formulations of monovariant flow analyses

analogously can be seen as instances of weak normalization-by-evaluation functions for

the linear λ -calculus.

15 Contributions

Flow analysis is a fundamental static analysis of functional, object-oriented, and other

higher-order programming languages; it is a ubiquitous and much-studied component of

compiler technology with nearly thirty years of research on the topic. This dissertation has

investigated the computational complexity of flow analysis in higher-order programming

languages, yielding novel insights into the fundamental limitations on the cost of perform-

ing flow analysis.

Monovariant flow analysis, such as 0CFA, is complete for polynomial time. More-

over, many further approximations to 0CFA from the literature, such as Henglein’s simple

closure analysis, remain complete for polynomial time. These theorems rely on the fact

that when a program is linear (each bound variable occurs exactly once), the analysis
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makes no approximation; abstract and concrete interpretation coincide. More generally,

we conjecture any abstract and concrete interpretation will have some sublanguage of

coincidence, and this sublanguage may be useful in proving lower bounds.

The linear λ -calculus has been identified as an important language subset to study in or-

der to understand flow analysis. Linearity is an equalizer among variants of static analysis,

and a powerful tool in proving lower bounds. Analysis of linear programs coincide under

both equality and inclusion-based flow constraints, and moreover, concrete and abstract

interpretation coincide for this core language. The inherently sequential nature of flow

analysis can be understood as a consequence of a lack of abstraction on this language

subset.

Since linearity plays such a fruitful role in the study of program analysis, we developed

connections with linear logic and the technology of sharing graphs. Monovariant analysis

can be formulated graphically, and the technology of graph reduction and optimal evalua-

tion can be applied to flow analysis. The explicit control representation of sharing graphs

makes it easy to extend flow analysis to languages with first-class control.

Simply-typed, η-expanded programs have a potentially simpler 0CFA problem, which

is complete for logarithmic space. This discovery is based on analogies with proof normal-

ization for multiplicative linear logic with atomic axioms.

Shivers’ polyvariant kCFA, for any k > 0, is complete for deterministic exponential time.

This theorem validates empirical observations that such control flow analysis is intractable.

A fairly straightforward calculation shows that kCFA can be computed in exponential time.

We show that the naive algorithm is essentially the best one. There is, in the worst case—

and plausibly, in practice—no way to tame the cost of the analysis. Exponential time is

required.

Collectively, these results provide general insight into the complexity of abstract inter-

pretation and program analysis.

16 Future Work

We end by outlining some new directions and open problems worth pursuing, in approxi-

mately ascending order of ambition and import.

16.1 Completing the Pointer Analysis Complexity Story

Compared with flow analysis, pointer analysis has received a much more thorough com-

plexity investigation. A series of important refinements have been made by (Landi & Ryder, 1991;

Landi, 1992a; Landi, 1992b; Choi et al., 1993; Horwitz, 1997; Muth & Debray, 2000; Chatterjee et al., 2001;

Chakaravarthy, 2003), yet open problems persist. (Chakaravarthy, 2003) leaves open the

lower bound on the complexity of pointer analysis with well-defined types with less than

two levels of dereference. We believe our insights into linearity and circuit construction

can lead to an answer to this remaining problem.

16.2 Polyvariant, Polynomial Flow Analyses

To echo the remark of (Bravenboer & Smaragdakis, 2009), only adapted to the setting of

flow analysis rather than pointer analysis, there is an ongoing search for polyvariant, or
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context-sensitive, analyses that provide precise flow information without causing massive

redundant computation. There has been important work in this area (Jagannathan & Weeks, 1995;

Nielson & Nielson, 1997), but the landscape of tractable, context-sensitive flow analyses is

mostly open and in need of development.

The ingredients, detailed in section 4, that combine to make kCFA hard, when k > 0,

should provide guidance in designing new abstractions that avoid computationally expen-

sive components of analysis. A lesson learned has been that closures, as they exist when

k > 0, result in an exponential value space that can be harnessed for the EXPTIME lower-

bound construction. It should be possible to design alternative closure abstractions while

remaining both polyvariant and polynomial (more below).

16.3 An Expressive Hierarchy of Flow Analyses

From the perspective of computational complexity, the kCFA hierarchy is flat (for any

fixed k, kCFA is in EXPTIME; see subsection 4.2). On the other hand, there are far more

powerful analyses such as those of (Burn et al., 1985) and (Mossin, 1998). How can we

systematically bridge the gap between these analyses to obtain a real expressivity hierar-

chy?

Flow analyses based on rank-bounded intersection types offers one approach. It should

also be possible to design such analyses by composing notions of precise but bounded

computation—such as partial evaluation or a series of complete developments—followed

by course analysis of residual programs. The idea is to stage analysis into two phases: the

first eliminates the need for polyvariance in analysis by transforming the original program

into an equivalent, potentially larger, residual program. The subsequent stage performs

a course (monovariant) analysis of the residual program. By staging the analysis in this

manner—first computing a precise but bounded program evaluation, then an imprecise

evaluation approximation—the “ever-worsening feedback loop” (Might & Shivers, 2006b)

is avoided. By using a sufficiently powerful notion of bounded evaluation, it should be

possible to construct flow analyses that form a true hierarchy from a complexity perspec-

tive. By using a sufficiently weak notion of bounded evaluation, it should be possible to

construct flow analyses that are arbitrarily polyvariant, but computable in polynomial time.

16.4 Truly Subcubic Inclusion-Based Flow Analysis

This dissertation has focused on lower bounds, however recent upper bound improvements

have been made on the “cubic bottleneck” of inclusion-based flow analyses such as 0CFA

(Midtgaard & Van Horn, 2009). These results have shown known set compression tech-

niques can be applied to obtain direct 0CFA algorithms that run in O(n3/ logn) time

on a unit cost random-access memory model machine. While these results do provide a

logarithmic improvement, it is natural to wonder if there is a O(nc) algorithm for 0CFA

and related analyses, where c < 3.

At the same time, there have been recent algorithmic breakthroughs on the all-pairs

shortest path problem resulting in truly subcubic algorithms. Perhaps the graphical formu-

lation of flow analysis from section 3 can be adapted to exploit these breakthroughs.
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16.5 Toward a Fundamental Theorem of Static Analysis

A theorem due to (Statman, 1979) says this: let P be a property of simply-typed λ -terms

that we would like to detect by static analysis, where P is invariant under reduction (nor-

malization), and is computable in elementary time (polynomial, or exponential, or doubly-

exponential, or. . . ). Then P is a trivial property: for any type τ , P is satisfied by all or

none of the programs of type τ . (Henglein & Mairson, 1991) have complemented these

results, showing that if a property is invariant under β -reduction for a class of programs that

can encode all Turing Machines solving problems of complexity class F using reductions

from complexity class G, then any superset is either F-complete or trivial. Simple typa-

bility has this property for linear and linear affine λ -terms (Henglein & Mairson, 1991;

Mairson, 2004), and these terms are sufficient to code all polynomial-time Turing Ma-

chines.

We would like to prove some analogs of these theorems, with or without the typing

condition, but weakening the condition of “invariant under reduction” to “invariant under

abstract interpretation.”
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Lévy, Jean-Jacques. 1978 (Jan.). Réductions correctes et optimales dans le lambda-calcul. Ph.D.

thesis, University of Paris VII. thése d’Etat.
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